Ядерные силы притяжения. Ядерные силы: свойства

Огромная энергия связи нуклонов в ядре указывает на то, что между нуклонами имеется очень интенсивное взаимодействие, которое удерживает нуклоны на расстоянии ~ 10" 15 м друг от друга, несмотря на сильное кулоновское отталкивание между протонами. Ядерное взаимодействие между нуклонами получило название сильного взаимодействия. Наши сведения об этих силах недостаточно подробны. Перечислим то, что известно.

  • 1. Ядерные силы - это силы притяжения, так как они удерживают нуклоны внутри ядра (при очень тесном сближении нуклонов ядерные силы между ними имеют характер отталкивания).
  • 2. Область действия ядерных сил ничтожно мала. Радиус их действия порядка (1н-2) 10" 15 м. При больших расстояниях между частицами ядерное взаимодействие не проявляется. Силы, интенсивность которых быстро ослабевает с расстоянием (например, по закону е~ аг / г, где е = 2,71...), называются короткодействующими. Ядерные силы в отличие от гравитационных и электромагнитных сил относятся к короткодействующим силам. Короткодействующий характер ядерных сил следует из малых размеров ядер (
  • 3. Ядерные силы (в той области, где они действуют) очень интенсивны. Оценки показывают, что ядерные силы в 100-1000 раз сильнее электромагнитных. Именно поэтому ядерное взаимодействие называют сильным.
  • 4. В соответствии с интенсивностью ядерное взаимодействие протекает за время в 100-1000 раз меньшее времени электромагнитного взаимодействия. Характерным временем для ядерного взаимодействия является так называемое ядерное время т я ~ Ю _23 С.
  • 5. Изучение степени связанности нуклонов в разных ядрах показывает, что ядерные силы обладают свойством насыщения, аналогичным валентности химических сил. В соответствии с этим свойством ядерных сил один и тот же нуклон взаимодействует не со всеми остальными нуклонами ядра, а только с несколькими соседними.
  • 6. Ядерные силы зависят от ориентации спина. Так, только при параллельных спинах нейтрон и протон могут образовывать ядро - дейтрон, при антипа- раллельных спинах интенсивность ядерного взаимодействия недостаточна для образования ядра.
  • 7. Ядерные силы имеют нецентральный характер, т.е. интенсивность взаимодействия зависит от взаимного расположения нуклонов относительно направления их спина.
  • 8. Важнейшим свойством ядерных сил является зарядовая независимость, т.е. тождественность трёх типов ядерного взаимодействия: р-р (между двумя протонами), п-р (между нейтроном и протоном) и п-п (между двумя нейтронами). При этом предполагается, что все три случая рассматриваются в эквивалентных условиях (например, по ориентации спина) и что кулоновское отталкивание в первом случае не учитывается.

Эти сведения о свойствах ядерных сил были получены в основном в результате изучения взаимодействия двух нуклонов, в частности рассеяния нейтрона на протоне и протона на протоне при низких и высоких энергиях. Расскажем здесь идею только одного эксперимента такого рода - рассеяние нейтронов высокой энергии (100-200 МэВ) на протонах.

Из классической механики известно, что при центральном соударении двух упругих шаров в бильярде летевший шар останавливается, а стоявший летит вперёд. При нецентральном ударе шары разлетаются в разные стороны и при том так, что угол между направлениями их разлёта составляет 90°. Область возможных отклонений от первоначального направления для обоих шаров заключена в пределах 0 - 90°.

Нейтрон и протон имеют приблизительно одинаковые массы, поэтому их соударение при низких энергиях происходит примерно так же, как и у бильярдных шаров. При высоких энергиях из-за необходимости использования релятивистской механики расчёты осложняются, и результаты получаются не такими простыми, как при низких энергиях. Тем не менее до измерений было ясно, что вперёд должно лететь значительно больше нейтронов, чем протонов.

Это связано с тем, что даже очень интенсивные ядер- ные силы не могут отклонить быстрый нейтрон на большой угол от первоначального направления. Между тем опыт показал, что в направлении первичного пучка летят как нейтроны, так и протоны, и примерно в одинаковых количествах. Объяснить этот результат можно было, только предположив, что в процессе ядерного взаимодействия нейтрон и протон как бы обмениваются электрическими зарядами, после чего нейтрон летит в качестве протона, а протон - в качестве нейтрона. Описанное явление называют рассеянием нуклонов с перезарядкой, а ядерные силы, ответственные за перезарядку, называют обменными. Если такой обмен происходит для каждой пары взаимодействующих нуклонов, то вперёд должны лететь преимущественно протоны, если же обмен происходит только в половине случаев, то вперёд будут лететь как протоны, так и нейтроны (и при том примерно в одинаковых количествах).

Возникает вопрос: в чём заключается механизм обмена зарядом? Впервые идея этого механизма была сформулирована Таммом, который предположил, что в процессе ядерного взаимодействия нуклоны испускают и поглощают заряженные частицы. По предположению Тамма, нейтрон в процессе ядерного взаимодействия с протоном испускает электрон, превращаясь в протон, а протон, поглотивший электрон, становится нейтроном. Однако сам же Тамм показал, что электроны слишком легки для того, чтобы с их помощью можно было одновременно объяснить два основных свойства ядерных сил: короткодей- ствие и большую интенсивность.

Следующий шаг был сделан Юкавой, который показал, какова должна быть масса у подходящей частицы, т.е. фактически предсказал существование в природе заряженных частиц тяжелее электрона. Эти предполагаемые частицы были названы мезонами (от греческого слова «мезос» - средний), что подчёркивает промежуточное значение их массы по сравнению с массами электронов и протонов.

Рассуждения Юкавы можно пояснить с помощью соотношения неопределённостей:

Из (1.8) следует: на короткое время At энергия системы может измениться на величину

Если время At очень мало, то АЕ может быть достаточно большим. Выберем это время таким, чтобы частица, движущаяся со скоростью порядка скорости света с, успевала пролетать расстояние, равное радиусу действия ядерных сил г = (1 -н 2) 10" 15 м:

Подставив это время в (1.9), получим:

Так как энергии Д? = 150МэВ соответствует масса

АЕ , ЛЛ

т = - » 300 т е, полученный результат можно интерпретировать как возникновение на короткое время 0,5 10 -23 с частицы массой 300 т е, которая за время своего существования успевает пролететь расстояние между двумя взаимодействующими нуклонами (1 2)10“ |5 м.

Итак, согласно этой идее (соответствующей современным представлениям), ядерное взаимодействие двух нуклонов, находящихся на расстоянии, равном радиусу действия ядерных сил, заключается в том, что один нуклон испускает частицу массой т ~ 300 т е, а другой поглощает её через ядерное время 10 _23 с. Частицы, которые существуют в районе действия ядерных сил в течение ядерного времени, называют виртуальными. Виртуальные частицы нельзя представлять себе существующими вне области ядерного взаимодействия, отдельно от нуклонов. Для того, чтобы виртуальная частица могла превратиться в реальную, т.е. такую, которая способна отделиться от своих «родителей» нуклонов и вести самостоятельный образ жизни за пределами области ядерного взаимодействия, нуклоны должны обладать достаточным запасом кинетической энергии, часть которой при их столкновении могла бы преобразоваться в массу покоя мезона.

Описанные мезоны получили название я-мезонов. Они были открыты в 1947 г.

Существуют положительный (/г +), отрицательный (я") и нейтральный (я 0) мезоны. Заряд п + и п~ мезонов равен элементарному заряду е = 1,6 10“ 19 Кл. Масса заряженных пионов одинакова и равна 273 т е (140 МэВ), масса л°-мезона равна 264 т е [ 135 МэВ). Спин как заряженных, так и нейтрального я-мезона равен нулю (7 = 0) . Все три частицы нестабильны. Время жизни заряженных мезонов составляет 2,6 10" 8 с, я°-мезона -0,8 10" 16 с.

Подавляющая часть заряженных я-мезонов распадается по схеме:

где и ц~ - положительный и отрицательный мюоны;

V и v - соответственно мюонное нейтрино и антинейтрино.

В среднем 98,8 % я°-мезонов распадается на два кванта:

Вернёмся к описанию обменного взаимодействия между нуклонами. В результате виртуальных процессов

нуклон оказывается окружённым облаком виртуальных я-мезонов, образующих поле ядерных сил. Поглощение этих мезонов другим нуклоном приводит к сильному взаимодействию между нуклонами, которое осуществляется по одной из следующих схем:

.р + п±>п + 7г + + п±>п+р. Протон испускает виртуальный к + -мезон, превращаясь в нейтрон. Мезон поглощается нейтроном, который вследствие этого превращается в протон. Затем такой же процесс протекает в обратном направлении. Каждый из взаимодействующих нуклонов проводит часть времени в заряженном состоянии, а часть - в нейтральном.

  • 2. п+р^р + п° + п^р + п. Протон и нейтрон обмениваются л-мезонами.
  • 3. р + п р + к 0 + п р + п;

р+р^р + 7г°+р^р+р",

П + П^П + 7Г°+П^П + П.

Теперь мы имеем возможность объяснить существование магнитного момента у нейтрона и аномальную величину магнитного момента протона.

В соответствии с процессом (1.13) нейтрон часть времени проводит в виртуальном состоянии (/? + тт). Орбитальное движение л~ -мезона приводит к возникновению наблюдаемого у нейтрона отрицательного магнитного момента. Аномальный магнитный момент протона (2,19р я, вместо одного ядерного магнетона) также можно объяснить орбитальным движением л + -мезона в течение того промежутка времени, когда протон находится в виртуальном состоянии (/2 + 7Г +) (1.12).

ЯДЕРНЫЕ СИЛЫ - силы взаимодействия между нуклонами; обеспечивают большую величину энергии связи ядер по сравнению с др. системами. Я. с. являются наиб. важным и распространённым примером сильного взаимодействия (СВ). Когда-то эти понятия были синонимами и сам термин " " был введён для подчёркивания огромной величины Я. с. по сравнению с др. известными в природе силами: эл--магн., слабыми, гравитационными. После открытия p- , r- и др. мезонов, гиперо-нов и др. адронов термин "сильное взаимодействие" стали применять в более широком смысле - как взаимодействие . В 1970-х гг. квантовая хромодинамика (КХД) утвердилась как общепризнанная микроскопич. теория СВ. Согласно этой теории, адроны являются составными частицами, состоящими из кварков и глюонов , а под СВ стали понимать взаимодействие этих фундам. частиц.

С др. стороны, Я. с. как силы взаимодействия между нуклонами включают не только СВ, но и эл--магн., слабое и гравитац. взаимодействия нуклонов. С точки зрения совр. теории, эл--магн. и слабое взаимодействия являются проявлениями одного, более фундаментального, электрослабого взаимодействия . Однако при тех пространственно-временных масштабах (~10 -13 см, ~10 -23 с), с к-рыми обычно имеют дело в атомных ядрах, единая природа эл--магн. и слабых сил практически не проявляется и их можно рассматривать как независимые. Эти взаимодействия, будучи гораздо слабее СВ, в большинстве ядерных процессов малосущественны, но возможны ситуации, когда их роль становится определяющей. Так, эл--магн. взаимодействие (наиб. существ. часть к-рого - кулоновское отталкивание между протонами), в отличие от СВ, является дальнодействующим. Поэтому обусловленная им положит. кулоновская энергия ядра растёт с увеличением числа частиц А в ядре быстрее, чем отрицат. часть ядерной энергии, обусловленная СВ. В результате тяжёлые ядра становятся при больших А нестабильными - сначала по отношению к делению (см. Деление ядер ),а затем и абсолютно нестабильными. Со слабым взаимодействием нуклонов связано такое явление, как несохранение чётности в нуклон-нуклонном рассеянии и в др. ядерных явлениях (см. Несохранение чётности в ядрах) . Гравитац. силы, действующие между нуклонами, пренебрежимо малы во всех ядерных явлениях и существенны только в астрофиз. условиях (см. Нейтронные звёзды ).

Основой Я. с. является сильное взаимодействие нуклонов. Сильное взаимодействие нуклонов в ядрах отличается от взаимодействия свободных нуклонов, однако последнее является фундаментом, на к-ром строится вся и теория Я. с. Это взаимодействие обладает изотопической инвариантностью . Суть её в том, что взаимодействие между 2 нейтронами, 2 протонами или между протоном и нейтроном в одинаковых квантовых состояниях одинаково. Поэтому можно говорить о взаимодействии между нуклонами, не уточняя, о каких нуклонах идёт речь (см. также Изотопическая инвариантность ядерных сил). Я. с. являются короткодействующими (радиус их действия ~10 -13 см) и обладают свойством насыщения, к-рое заключается в том, что с увеличением числа нуклонов в ядре уд. энергия связи нуклонов остаётся примерно постоянной (рис. 1). Это приводит к возможности существования ядерной материи .

Поскольку нуклоны в ядре движутся, как правило, со сравнительно небольшими скоростями (в 3-4 раза меньше ), то для построения модели СВ нуклонов в ядрах можно пользоваться нерелятивистской теорией и приближённо описывать его потенциалом, к-рый является ф-цией расстояния r между нуклонами. В отличие от кулоновского и гравитац. потенциалов, обратно пропорциональных расстоянию, потенциал Я. с. зависит от r гораздо сложнее. Кроме того, потенциал Я. с. зависит от спинов нуклонов и орбитального момента L нуклонов.

Нерелятивистский потенциал Я. с. содержит неск. компонентов: центральный V C , тензорный V T , спин-орбитальный V LS и квадратичный спин-орбитальный потенциал V LL . Наиб. важный из них - центральный - является комбинацией сильного отталкивания на малых расстояниях (т.н. отталкивательный кор) и притяжения - на больших (см. рис. к ст. Ядерная материя ).Существуют модели СВ нуклонов с бесконечным ("жёстким") кором (напр., феноменологич. потенциал Хамады - Джонстона), а также более реалистич. модели с конечным ("мягким") кором (напр., потенциал Рейда, рис. 2). С кон. 1950-х гг. было предпринято множество попыток построения потенциала Я. с. на основе полевой теории мезон-нуклонного взаимодействия. Очевидные трудности такой теории связаны с большой силой взаимодействия и неприменимостью теории возмущений и основанных на ней методов. Весьма популярен полуфеноменологич. потенциал "однобозонно-го обмена", основанный на представлениях мезоннуклонной полевой теории, но использующий простейшую модель од-номезонного обмена. При этом оказалось, что для описания притяжения на промежуточных расстояниях необходимо помимо известных мезонов p, р, w,... вводить также обмен несуществующим s-мезоном, к-рый интерпретируют как эфф. учёт обмена двумя p-мезонами. Константы мезон-нуклонного взаимодействия рассматривались как феноменологич. параметры, к-рые подбирались так, чтобы потенциал описывал эксперим. фазы нуклон-нуклонного рассеяния. За короткодействующее отталкивание оказались ответственными w- и r-мезоны, а за дальнодействующее притяжение - пи-мезон . Член однопи-онного обмена вносит вклад в центральный и тензорный потенциалы:


где f p NN - константа пион-нуклонного взаимодействия, т p -масса пиона, l=с /m p =1,4 Фм - комптоновская длина волны пиона, a s 1 , s 2 -спиновые Паули матрицы .Как видно из выражений (1), (2), потенциал однопионного обмена экспоненциально спадает на расстоянии порядка комптоновской длины пиона. Др. члены потенциала одно-бозонного обмена имеют такого же типа экспоненц. факторы, но с комптоновскими длинами соответствующих , к-рые в неск. раз меньше пионной. На таких расстояниях обмен неск. пионами может быть столь же существенным, как и обмен одним тяжёлым мезоном. Это объясняет, почему члены, отвечающие обмену тяжёлыми мезонами, воспринимаются как полуфеноменологические. В то же время вид потенциала Я. с, на больших расстояниях, без сомнения, описывается выражениями (1), (2). Такой асимптотич. вид имеют и все без исключения феноменологич. потенциалы. В настоящее время наиб. точными считают т. н. парижский и боннский потенциалы, к-рые сочетают черты феноменологич. потенциалов с мягким кором и потенциала однобозонного обмена.

Совр. представления о природе СВ, основанные на КХД, поставили задачу расчёта потенциала СВ нуклонов в рамках КХД, но она пока не решена, поскольку не решена и более простая задача о построении теории одного нуклона. Существует неск. кварковых моделей адронов, из к-рых наиб. известна модель мешков в разл. вариантах. Она позволяет качественно понять природу отталкива-тельного кора, оценить его радиус и высоту, но не позволяет рассчитать вид потенциала на больших расстояниях. Под большим вопросом, с точки зрения КХД, оказывается статус мезонов (за исключением p-мезона) в формировании потенциала СВ нуклонов: обмен тяжёлыми мезонами между нуклонами происходит на столь малых расстояниях, что их кварк-глюонная природа становится существенной. Особое место в КХД-теории СВ принадлежит p-мезону. Согласно совр. представлениям, он интерпретируется как коллективное возбуждение , состоящее из большого числа кварк-антикварковых пар (голд-стоуновский бозон , связанный со спонтанным нарушением в КХД киральной симметрии) . Поэтому в большинстве совр. моделей все остальные адроны считают состоящими из небольшого числа (антикварков, глюонов), а я-мезон вводят дополнительно как независимую частицу. С такой точки зрения понятен статус потенциалов (1), (2) как описывающих "хвост" потенциала взаимодействия нуклонов.

Поскольку ср. расстояние между нуклонами в ядре (1,8 Фм) не сильно превышает радиус действия Я. с., то в ядрах существуют многочастичные (прежде всего, 3-частичные) силы, возникающие из-за обмена кварками и глюонами между неск. нуклонами практически одновременно. В терминах адронов это отвечает таким процессам обмена мезонами между, напр., тремя нуклонами, к-рые нельзя свести к совокупности последовательных парных обменов. Гл. роль в формировании 3-частичных сил играет обмен p-мезонами, причём существ. вклад вносят и процессы виртуального возбуждения D-изобары - первого возбуждённого состояния нуклона. Т. о., пионы и D-изоба-ры являются основными ненуклонными степенями свободы, к-рые важны в ядерных процессах. Многочастичные силы в ядрах сравнительно невелики: их вклад в энергию связи не превышает 10-15%. Однако существуют явления, где они играют осн. роль.

Гл. часть эл--магн. взаимодействия нуклонов составляет кулоновское отталкивание между протонами. На больших расстояниях оно определяется только протонов. СВ приводит к тому, что электрич. заряд протона не является точечным, а распределён на расстояниях 1 Фм (среднеквадратичный радиус протона равен 0,8 Фм; см. "Размер" элементарной частицы) . Электрич. взаимодействие на малых расстояниях зависит и от распределения заряда внутри протона. Это распределение совр. теория СВ не может надёжно рассчитать, но оно достаточно хорошо известно из эксперим. данных по рассеянию электронов на протонах. Нейтроны в целом электронейтральны, но из-за СВ распределение заряда внутри нейтрона также существует, что приводит к электрич. взаимодействию между двумя нейтронами и между нейтроном и протоном. Магн. взаимодействие между нейтронами такого же порядка, что и между протонами, из-за большой величины аномального магнитного момента , обусловленного СВ. Менее ясна ситуация со слабым взаимодействием нуклонов. Хотя гамильтониан известен хорошо, СВ приводит к перенормировке соответствующих констант взаимодействия (аналог аномального магн. момента) и возникновению формфакторов . Как и в случае эл--магн. взаимодействия, эффекты слабого взаимодействия не могут быть достоверно рассчитаны, но в этом случае они не известны и экспериментально. Имеющиеся данные о величине эффектов несохранения чётности в 2-нуклонной системе позволяют установить интенсивность этого взаимодействия, но не его структуру. Существует неск. альтернативных моделей слабого взаимодействия нуклонов, к-рые одинаково хорошо описывают 2-нуклонные эксперименты, но приводят к разл. следствиям для атомных ядер.

Лит.: Бор О., Моттельсон Б., Структура атомного ядра, пер. с англ., т. 1-2, М., 1971-77; Калоджеро Ф., Симонов Ю. А., Ядерные силы , насыщение и структура ядер, в сб.: Будущее науки, в. 9, М., 1976. Э. Е. Саперштейн .

Между составляющими ядро нуклонами действуют ядерные силы , значительно превышающие кулоновские силы отталкивания между протонами. С точки зрения полевой теории элементарных частиц ядерные силы, в основном, являются силами взаимодействия магнитных полей нуклонов в ближней зоне. На больших расстояниях потенциальная энергия такого взаимодействия убывает по закону 1/r 3 - этим объясняется их короткодействующий характер. На расстоянии (3 ∙10 -13 см) ядерные силы становятся доминирующими, а на расстояниях менее (9,1 ∙10 -14 см) они превращаются в еще более мощные силы отталкивания.

Ядерные силы являются короткодействующими силами. Они проявляются лишь на весьма малых расстояниях между нуклонами в ядре порядка 10 –15 м. Длина (1,5 – 2,2)·10 –15 м называется радиусом действия ядерных сил.

Ядерные силы обнаруживают зарядовую независимость : притяжение между двумя нуклонами одинаково независимо от зарядового состояния нуклонов – протонного или нейтронного. Зарядовая независимость ядерных сил видна из сравнения энергий связи зеркальных ядер . Так называются ядра , в которых одинаково общее число нуклонов , но число протонов в одном равно числу нейтронов другом . Например, ядра гелия и тяжелого водорода – трития . Энергии связи этих ядер составляют 7,72 МэВ и 8,49 МэВ.

Разность энергий связи ядер, равная 0,77 МэВ, соответствует энергии кулоновского отталкивания двух протонов в ядре .

Ядерные силы обладают свойством насыщения , которое проявляется в том , что нуклон в ядре взаимодействует лишь с ограниченным числом ближайших к нему соседних нуклонов . Именно поэтому наблюдается линейная зависимость энергий связи ядер от их массовых чисел A . Практически полное насыщение ядерных сил достигается у α-частицы, которая является очень устойчивым образованием.

Ядерные силы зависят от ориентации спинов взаимодействующих нуклонов . Это подтверждается различным характером рассеяния нейтронов молекулами орто- и параводорода. В молекуле ортоводорода спины обоих протонов параллельны друг другу, а в молекуле параводорода они антипараллельны. Опыты показали, что рассеяние нейтронов на параводороде в 30 раз превышает рассеяние на ортоводороде. Ядерные силы не являются центральными .

Взаимодействие между нуклонами возникает в результате испускания и поглощения квантов ядерного поля π-мезонов . Они определяют ядерное поле по аналогии с электромагнитным полем, которое возникает как следствие обмена фотонами.

Энергия связи

Прочность ядер характеризуется энергией связи . По своей величине энергия связи равна той работе, которую необходимо затратить для разрушения ядра на составляющие его нуклоны без придания им кинетической энергии . Такое же количество энергии освобождается при образовании ядра из нуклонов. Энергия связи ядра является разностью между энергией всех свободных нуклонов, составляющих ядро, и их энергией в ядре.

При образовании ядра происходит уменьшение его массы: масса ядра меньше, чем сумма масс составляющих его нуклонов. Уменьшение массы ядра при его образовании объясняется выделением энергии связи. Количество заключенной в веществе энергии непосредственно связано с его массой соотношением Эйнштейна

E = mc 2 .

В соответствии с этим соотношением масса и энергия представляют собой разные формы одного и того же явления. Ни масса, ни энергия не исчезают, а при соответствующих условиях переходят из одного вида в другой, т.е. любому изменению массы m системы соответствует эквивалентное изменение ее энергии Е .

Разность между суммой масс свободных нуклонов и массой ядра называется дефектом массы атомного ядра . Если ядро с массой m образовано из Z протонов с массой m p и из (А – Z ) нейтронов с массой m n , то дефект массы Δ m определяется соотношением

При образовании ядра из частиц последние за счет действия ядерных сил на малых расстояниях устремляются с огромным ускорением друг к другу. Излучаемые при этом гамма-кванты как раз обладают энергией Е св и массой m .

По дефекту массы, с помощью уравнения Эйнштейна (Е = mc 2 ) можно определить энергию, выделившуюся в результате образования ядра, т.е. энергию связи (Е cв ):

Е cв = Δ mc 2

Энергия связи, приходящаяся на один нуклон (т. е. полная энергия связи поделенная на число нуклонов в ядре), называется удельной энергией связи :

Чем больше по абсолютной величине удельная энергия связи, тем сильнее взаимодействие между нуклонами и тем прочнее ядро. Наибольшая энергия связи, приходящаяся на один нуклон, порядка 8,75 МэВ, присуща элементам средней части таблицы Менделеева.

Ядерные спектры

Атомное ядро, как и другие объекты микромира, является квантовой системой. Это означает, что теоретическое описание его характеристик требует привлечения квантовой теории. В квантовой теории описание состояний физических систем основывается на волновых функциях, или амплитудах вероятности ψ(α,t). Квадрат модуля этой функции определяет плотность вероятности обнаружения исследуемой системы в состоянии с характеристикой α – ρ(α,t) = |ψ(α,t)| 2 . Аргументом волновой функции могут быть, например, координаты частицы.

Квантовый характер атомных ядер проявляется в картинах их спектров возбуждения. Ядра обладают дискретными спектрами возможных энергетических состояний. Таким образом, квантование энергии и ряда других параметров является свойством не только атомов, но и атомных ядер. Состояние атомного ядра с минимальным запасом энергии называется основным , или нормальным, состояния с избыточной энергией (по сравнению с основным состоянием) называются возбужденными .

Спектр состояний ядра 12 С

Атомы обычно находятся в возбужденных состояниях примерно 10 -8 секунды, а возбужденные атомные ядра избавляются от избытка энергии за гораздо более короткое время - порядка 10 -15 - 10 -16 секунды. Как и атомы, возбужденные ядра освобождаются от избытка энергии, испуская кванты электромагнитного излучения. Эти кванты называются гамма-квантами (или гамма-лучами). Дискретному набору энергетических состояний атомного ядра соответствует дискретный спектр частот излучаемых ими гамма-квантов.

Многие закономерности в ядерных спектрах можно объяснить, если воспользоваться так называемой оболочечной моделью строения атомного ядра. Согласно этой модели, нуклоны в ядре не перемешаны в беспорядке, а, подобно электронам в атоме, располагаются связанными группами, заполняя разрешенные ядерные оболочки. При этом протонные и нейтронные оболочки заполняются независимо друг от друга. Максимальные числа нейтронов: 2, 8, 20, 28, 40, 50, 82, 126 и протонов: 2, 8, 20, 28, 50, 82 в заполненных оболочках получили название магических. Ядра с магическими числами протонов и нейтронов обладают многими замечательными свойствами: повышенным значением удельной энергии связи, меньшей вероятностью вступления в ядерное взаимодействие, устойчивостью по отношению к радиоактивному распаду и т. п. "Дважды магическими" являются, например, ядра 4 He , 16 O , 28 Si . Именно из-за своей особо высокой стабильности эти ядра максимально распространены в природе.

Переход ядра из основного состояния в возбужденное и возвращение его в основное состояние, с точки зрения оболочечной модели, объясняется переходом нуклона с одной оболочки на другую и обратно.

Спонтанные переходы ядер из более высоких возбужденных состояний дискретного спектра ядра в более низкие (в том числе в основное состояние) реализуются, как правило, путем излучения γ-квантов, т.е. за счет электромагнитных взаимодействий . В области больших энергий возбуждения, когда E > E отд, ширины уровней возбужденного ядра резко возрастают. Дело в том, что в отделении нуклона от ядра главную роль играют ядерные силы - т.е. сильные взаимодействия. Вероятность сильных взаимодействий на порядки выше вероятности электромагнитных, поэтому ширины распада по сильным взаимодействиям велики и уровни ядерных спектров в области E > E отд перекрываются – спектр ядра становится непрерывным. Главным механизмом распада высоковозбужденных состояний из этой области энергий является испускание нуклонов и кластеров (α-частиц и дейтронов). Излучение γ-квантов в этой области высоких энергий возбуждения E > E отд происходит с меньшей вероятностью, чем испускание нуклонов. Возбужденное ядро имеет, как правило, несколько путей, или каналов , распада.

В физике понятием «сила» обозначают меру взаимодействия материальных образований между собой, включая взаимодействия частей вещества (макроскопических тел, элементарных частиц) друг с другом и с физическими полями (электромагнитным, гравитационным). Всего известно четыре типа взаимодействия в природе: сильное, слабое, электромагнитное и гравитационное, и каждому соответствует свой вид сил. Первому из них отвечают ядерные силы, действующие внутри атомных ядер.

Что объединяет ядра?

Общеизвестно, что ядро атома является крошечным, его размер на четыре-пять десятичных порядков меньше размера самого атома. В связи с этим возникает очевидный вопрос: почему оно настолько мало? Ведь атомы, состоящие из крошечных частиц, все же гораздо больше, чем частицы, которые они содержат.

Напротив, ядра не сильно отличаются по размеру от нуклонов (протонов и нейтронов), из которых они сделаны. Есть ли причина этому или это случайность?

Между тем, известно, что именно электрические силы удерживают отрицательно заряженные электроны вблизи атомных ядер. Какая же сила или силы удерживают частицы ядра вместе? Эту задачу выполняют ядерные силы, являющиеся мерой сильных взаимодействий.

Сильное ядерное взаимодействие

Если бы в природе были только гравитационные и электрические силы, т.е. те, с которыми мы сталкиваемся в повседневной жизни, то атомные ядра, состоящие зачастую из множества положительно заряженных протонов, были бы нестабильны: электрические силы, толкающие протоны друг от друга будут во много миллионов раз сильнее, чем любые гравитационные силы, притягивающие их друг к другу. Ядерные силы обеспечивают притяжение еще более сильное, чем электрическое отталкивание, хотя лишь тень их истинной величины проявляется в структуре ядра. Когда мы изучаем строение самих протонов и нейтронов, то видим истинные возможности того явления, которое известно как сильное ядерное взаимодействие. Ядерные силы есть его проявление.

На рисунке выше показано, что двумя противоположными силами в ядре являются электрическое отталкивание между положительно заряженными протонами и сила ядерного взаимодействия, которая притягивает протоны (и нейтроны) вместе. Если число протонов и нейтронов не слишком отличается, то вторые силы превосходят первые.

Протоны - аналоги атомов, а ядра - аналоги молекул?

Между какими частицами действуют ядерные силы? Прежде всего между нуклонами (протонами и нейтронами) в ядре. В конце концов они действуют и между частицами (кварками, глюонами, антикварками) внутри протона или нейтрона. Это неудивительно, когда мы признаем, что протоны и нейтроны являются внутренне сложными.

В атоме крошечные ядра и еще более мелкие электроны находятся относительно далеко друг от друга по сравнению с их размерами, а электрические силы, удерживающие их в атоме, действуют довольно просто. Но в молекулах расстояние между атомами сравнимо с размерами атомов, так что внутренняя сложность последних вступает в игру. Разнообразная и сложная ситуация, вызванная частичной компенсацией внутриатомных электрических сил, порождает процессы, в которых электроны могут на самом деле перейти от одного атома к другому. Это делает физику молекул гораздо богаче и сложнее, чем у атомов. Аналогичным образом и расстояние между протонами и нейтронами в ядре сопоставимо с их размерами - и также, как и с молекулами, свойства ядерных сил, удерживающих ядра вместе, намного сложнее, чем простое притяжение протонов и нейтронов.

Нет ядра без нейтрона, кроме как у водорода

Известно, что ядра некоторых химических элементов стабильны, а у других они непрерывно распадаются, причем диапазон скоростей этого распада весьма широк. Почему же прекращают свое действие силы, удерживающие нуклоны в ядрах? Давайте посмотрим, что мы можем узнать из простых соображений о том, какие имеются свойства ядерных сил.

Одно из них то, что все ядра, за исключением наиболее распространенного изотопа водорода (который имеет только один протон), содержат нейтроны; то есть нет ядра с несколькими протонами, которые не содержат нейтронов (см. рис. ниже). Итак, ясно, что нейтроны играют важную роль в оказании помощи протонам держаться вместе.

На рис. выше показаны легкие стабильные или почти устойчивые ядра вместе с нейтроном. Последний, как и тритий, показаны пунктиром, указывающим, что они в конечном итоге распадаются. Другие комбинации с малым числом протонов и нейтронов не образуют ядра вовсе, либо образуют чрезвычайно нестабильные ядра. Кроме того, показаны курсивом альтернативные названия, часто даваемые некоторым из этих объектов; Например, ядро гелия-4 часто называют α-частицей, название, данное ему, когда оно было первоначально обнаружено в первых исследованиях радиоактивности в 1890 годах.

Нейтроны в роли пастухов протонов

Наоборот, нет ядра, сделанного только из нейтронов без протонов; большинство легких ядер, таких как кислорода и кремния, имеют примерно то же самое число нейтронов и протонов (рисунок 2). Большие ядра с большими массами, как у золота и радия, имеют несколько больше нейтронов, чем протонов.

Это говорит о двух вещах:

1. Не только нейтроны необходимы, чтобы протоны держались вместе, но и протоны нужны, чтобы удержать нейтроны тоже вместе.

2. Если количество протонов и нейтронов становится очень большим, то электрическое отталкивание протонов должно быть скомпенсировано добавлением нескольких дополнительных нейтронов.

Последнее утверждение проиллюстрировано на рисунке ниже.

На рисунке выше показаны стабильные и почти устойчивые атомные ядра как функция P (числа протонов) и N (числа нейтронов). Линия, показанная черными точками обозначает стабильные ядра. Любое смещение от черной линии вверх или вниз означает уменьшение жизни ядер - вблизи нее срок жизни ядер составляет миллионы лет или более, по мере удаления внутрь синей, коричневой или желтой областей (разные цвета соответствует разным механизмам ядерного распада) время их жизни становится все короче, вплоть до долей секунды.

Обратите внимание, что стабильные ядра имеют P и N, примерно равные для малых P и N, но N постепенно становится больше, чем P более чем в полтора раза. Отметим также, что группа стабильных и долгоживущих нестабильных ядер остается в достаточно узкой полосе для всех значений P вплоть до 82. При большем их числе известные ядра в принципе являются нестабильными (хотя и могут существовать миллионы лет). По-видимому, отмеченный выше механизм стабилизации протонов в ядрах за счет добавления к ним нейтронов в этой области не имеет стопроцентной эффективности.

Как размер атома зависит от массы его электронов

Как же влияют рассматриваемые силы на строение атомного ядра? Ядерные силы влияют прежде всего на его размер. Почему же все-таки ядра так малы по сравнению с атомами? Чтобы выяснить это, давайте начнем с простейшего ядра, которое имеет как протон, так и нейтрон: это второй наиболее распространенной изотоп водорода, атом которого содержит один электрон (как и все изотопы водорода) и ядро из одного протона и одного нейтрона. Этот изотоп часто называют "дейтерий", а его ядро (см. рисунок 2) иногда называют "дейтрон." Как мы можем объяснить, что держит дейтрон вместе? Ну, можно представить себе, что он не так уж отличается от атома обычного водорода, который также содержит две частицы (протон и электрон).

На рис. выше показано, что в атоме водорода ядро ​​и электрон очень далеки друг от друга, в том смысле, что атом гораздо больше, чем ядро (а электрон еще меньше.) Но в дейтроне расстояние между протоном и нейтроном сравнимо с их размерами. Это отчасти объясняет, почему ядерные силы являются гораздо более сложными, чем силы в атоме.

Известно, что электроны имеют небольшую массу по сравнению с протонами и нейтронами. Отсюда следует, что

  • масса атома, по существу близка к массе его ядра,
  • размер атома (по существу размер электронного облака) обратно пропорционален массе электронов и обратно пропорционален общей электромагнитной силе; принцип неопределенности квантовой механики играет решающую роль.

А если ядерные силы аналогичны электромагнитным

Что же с дейтроном? Он так же, как и атом, сделан из двух объектов, но они почти одинаковой массы (массы нейтрона и протона отличаются лишь части примерно на одну 1500-ю часть), так что обе частицы в равной степени важны в определении массы дейтрона и его размера. Теперь предположим, что ядерная сила тянет протон к нейтрону так же, как электромагнитные силы (это не совсем так, но представьте себе, на мгновение); а затем, по аналогии с водородом, мы ожидаем, размер дейтрона обратно пропорциональным массе протона или нейтрона, и обратно пропорциональным величине ядерной силе. Если ее величина была такой же (на определенном расстоянии), как у электромагнитной силы, то это будет означать, что так как протон примерно в 1850 раз тяжелее электрон, то дейтрон (и действительно любое ядро) должно быть по крайней мере в тысячу раз меньше, чем у водорода.

Что дает учет существенной разницы ядерных и электромагнитных сил

Но мы уже догадались, что ядерная сила намного больше электромагнитной (на том же расстоянии), потому что, если это не так, она была бы не в состоянии предотвратить электромагнитное отталкивание между протонами вплоть до распада ядра. Так что протон и нейтрон под ее действием сближаются вместе еще более плотно. И поэтому не удивительно, что дейтрон и другие ядер не просто в одну тысячу, но в сто тысяч раз меньше, чем атомы! Опять же, это только потому, что

  • протоны и нейтроны почти в 2000 раз тяжелее, чем электроны,
  • на этих расстояниях, большая ядерная сила между протонами и нейтронами в ядре во много раз больше, чем соответствующие электромагнитные силы (в том числе электромагнитного отталкивания между протонами в ядре.)

Эта наивная догадка дает примерно правильный ответ! Но это не полностью отражает сложность взаимодействия между протоном и нейтроном. Одна из очевидных проблем состоит в том, что сила, подобная электромагнитной, но с большей притягивающей или отталкивающей способностью, должна очевидно проявляться в повседневной жизни, но мы не наблюдаем ничего подобного. Так что, что-то в этой силе должно отличаться от электрических сил.

Короткий диапазон ядерной силы

Что их отличает, так это то, что удерживающие от распада атомное ядро ядерные силы являются очень важными и большими для протонов и нейтронов, находящихся на очень коротком расстоянии друг от друга, но на определенном расстоянии (так называемом "диапазоне" силы), они падают очень быстро, гораздо быстрее, чем электромагнитные. Диапазон, оказывается, может также быть размером с умеренно большое ядро, только в несколько раз больше, чем протон. Если поместить протон и нейтрон на расстоянии, сравнимом с этим диапазоном, они будут притягиваться друг к другу и образуют дейтон; если их разнести на большее расстояние, они едва ли будут ощущать какое-либо притяжение вообще. На самом деле, если их поместить слишком близко друг к другу, так, что они начнут перекрываться, то они будут на самом деле отталкиваются друг от друга. В этом и проявляется сложность такого понятия, как ядерные силы. Физика продолжает непрерывно развиваться в направлении объяснения механизма их действия.

Физический механизм ядерного взаимодействия

У всякого материального процесса, включая и взаимодействие между нуклонами, должны быть материальные же переносчики. Ими являются кванты ядерного поля - пи-мезоны (пионы), из-за обмена которыми и возникает притяжение между нуклонами.

Согласно принципам квантовой механики, пи-мезоны, то и дело возникая и тут же исчезая, образуют вокруг «голого» нуклона что-то вроде облака, называемого мезонной шубой (вспомните об электронных облаках в атомах). Когда два нуклона, окруженные такими шубами, оказываются на расстоянии порядка 10 -15 м, происходит обмен пионами подобно обмену валентными электронами в атомах при образовании молекул, и между нуклонами возникает притяжение.

Если же расстояния между нуклонами становятся меньше 0,7∙10 -15 м, то они начинают обмениваться новыми частицами - т.наз. ω и ρ-мезонами, вследствие чего между нуклонами возникает не притяжение, а отталкивание.

Ядерные силы: строение ядра от простейшего к большему

Резюмируя все вышесказанное, можно отметить:

  • сильное ядерное взаимодействие гораздо, гораздо слабее, чем электромагнетизм на расстояниях, значительно больших, чем размер типичного ядра, так что мы не сталкиваемся с ним в повседневной жизни; но
  • на коротких расстояниях, сравнимых с ядром, оно становится гораздо сильнее - сила притяжения (при условии, что расстояние не слишком короткое), способна преодолеть электрическое отталкивание между протонами.

Итак, эта сила имеет значение только на расстояниях, сравнимых с размерами ядра. На рисунке ниже показан вид ее зависимости от расстояния между нуклонами.

Большие ядра удерживаются вместе с помощью более или менее той же силы, что держит дейтрон вместе, но детали процесса усложняются, так что их непросто описать. Они также не в полной мере понятны. Хотя основные очертания физики ядра были хорошо изучены в течение десятилетий, многие важные детали все еще активно исследуются.

В физике понятием «сила» обозначают меру взаимодействия материальных образований между собой, включая взаимодействия частей вещества (макроскопических тел, элементарных частиц) друг с другом и с физическими полями (электромагнитным, гравитационным). Всего известно четыре типа взаимодействия в природе: сильное, слабое, электромагнитное и гравитационное, и каждому соответствует свой вид сил. Первому из них отвечают ядерные силы, действующие внутри атомных ядер.

Что объединяет ядра?

Общеизвестно, что ядро атома является крошечным, его размер на четыре-пять десятичных порядков меньше размера самого атома. В связи с этим возникает очевидный вопрос: почему оно настолько мало? Ведь атомы, состоящие из крошечных частиц, все же гораздо больше, чем частицы, которые они содержат.

Напротив, ядра не сильно отличаются по размеру от нуклонов (протонов и нейтронов), из которых они сделаны. Есть ли причина этому или это случайность?

Между тем, известно, что именно электрические силы удерживают отрицательно заряженные электроны вблизи атомных ядер. Какая же сила или силы удерживают частицы ядра вместе? Эту задачу выполняют ядерные силы, являющиеся мерой сильных взаимодействий.

Сильное ядерное взаимодействие

Если бы в природе были только гравитационные и электрические силы, т.е. те, с которыми мы сталкиваемся в повседневной жизни, то атомные ядра, состоящие зачастую из множества положительно заряженных протонов, были бы нестабильны: электрические силы, толкающие протоны друг от друга будут во много миллионов раз сильнее, чем любые гравитационные силы, притягивающие их друг к другу. Ядерные силы обеспечивают притяжение еще более сильное, чем электрическое отталкивание, хотя лишь тень их истинной величины проявляется в структуре ядра. Когда мы изучаем строение самих протонов и нейтронов, то видим истинные возможности того явления, которое известно как сильное ядерное взаимодействие. Ядерные силы есть его проявление.

На рисунке выше показано, что двумя противоположными силами в ядре являются электрическое отталкивание между положительно заряженными протонами и сила ядерного взаимодействия, которая притягивает протоны (и нейтроны) вместе. Если число протонов и нейтронов не слишком отличается, то вторые силы превосходят первые.

Протоны - аналоги атомов, а ядра - аналоги молекул?

Между какими частицами действуют ядерные силы? Прежде всего между нуклонами (протонами и нейтронами) в ядре. В конце концов они действуют и между частицами (кварками, глюонами, антикварками) внутри протона или нейтрона. Это неудивительно, когда мы признаем, что протоны и нейтроны являются внутренне сложными.

В атоме крошечные ядра и еще более мелкие электроны находятся относительно далеко друг от друга по сравнению с их размерами, а электрические силы, удерживающие их в атоме, действуют довольно просто. Но в молекулах расстояние между атомами сравнимо с размерами атомов, так что внутренняя сложность последних вступает в игру. Разнообразная и сложная ситуация, вызванная частичной компенсацией внутриатомных электрических сил, порождает процессы, в которых электроны могут на самом деле перейти от одного атома к другому. Это делает физику молекул гораздо богаче и сложнее, чем у атомов. Аналогичным образом и расстояние между протонами и нейтронами в ядре сопоставимо с их размерами - и также, как и с молекулами, свойства ядерных сил, удерживающих ядра вместе, намного сложнее, чем простое притяжение протонов и нейтронов.

Нет ядра без нейтрона, кроме как у водорода

Известно, что ядра некоторых химических элементов стабильны, а у других они непрерывно распадаются, причем диапазон скоростей этого распада весьма широк. Почему же прекращают свое действие силы, удерживающие нуклоны в ядрах? Давайте посмотрим, что мы можем узнать из простых соображений о том, какие имеются свойства ядерных сил.

Одно из них то, что все ядра, за исключением наиболее распространенного изотопа водорода (который имеет только один протон), содержат нейтроны; то есть нет ядра с несколькими протонами, которые не содержат нейтронов (см. рис. ниже). Итак, ясно, что нейтроны играют важную роль в оказании помощи протонам держаться вместе.

На рис. выше показаны легкие стабильные или почти устойчивые ядра вместе с нейтроном. Последний, как и тритий, показаны пунктиром, указывающим, что они в конечном итоге распадаются. Другие комбинации с малым числом протонов и нейтронов не образуют ядра вовсе, либо образуют чрезвычайно нестабильные ядра. Кроме того, показаны курсивом альтернативные названия, часто даваемые некоторым из этих объектов; Например, ядро гелия-4 часто называют α-частицей, название, данное ему, когда оно было первоначально обнаружено в первых исследованиях радиоактивности в 1890 годах.

Нейтроны в роли пастухов протонов

Наоборот, нет ядра, сделанного только из нейтронов без протонов; большинство легких ядер, таких как кислорода и кремния, имеют примерно то же самое число нейтронов и протонов (рисунок 2). Большие ядра с большими массами, как у золота и радия, имеют несколько больше нейтронов, чем протонов.

Это говорит о двух вещах:

1. Не только нейтроны необходимы, чтобы протоны держались вместе, но и протоны нужны, чтобы удержать нейтроны тоже вместе.

2. Если количество протонов и нейтронов становится очень большим, то электрическое отталкивание протонов должно быть скомпенсировано добавлением нескольких дополнительных нейтронов.

Последнее утверждение проиллюстрировано на рисунке ниже.

На рисунке выше показаны стабильные и почти устойчивые атомные ядра как функция P (числа протонов) и N (числа нейтронов). Линия, показанная черными точками обозначает стабильные ядра. Любое смещение от черной линии вверх или вниз означает уменьшение жизни ядер - вблизи нее срок жизни ядер составляет миллионы лет или более, по мере удаления внутрь синей, коричневой или желтой областей (разные цвета соответствует разным механизмам ядерного распада) время их жизни становится все короче, вплоть до долей секунды.

Обратите внимание, что стабильные ядра имеют P и N, примерно равные для малых P и N, но N постепенно становится больше, чем P более чем в полтора раза. Отметим также, что группа стабильных и долгоживущих нестабильных ядер остается в достаточно узкой полосе для всех значений P вплоть до 82. При большем их числе известные ядра в принципе являются нестабильными (хотя и могут существовать миллионы лет). По-видимому, отмеченный выше механизм стабилизации протонов в ядрах за счет добавления к ним нейтронов в этой области не имеет стопроцентной эффективности.

Как размер атома зависит от массы его электронов

Как же влияют рассматриваемые силы на строение атомного ядра? Ядерные силы влияют прежде всего на его размер. Почему же все-таки ядра так малы по сравнению с атомами? Чтобы выяснить это, давайте начнем с простейшего ядра, которое имеет как протон, так и нейтрон: это второй наиболее распространенной изотоп водорода, атом которого содержит один электрон (как и все изотопы водорода) и ядро из одного протона и одного нейтрона. Этот изотоп часто называют "дейтерий", а его ядро (см. рисунок 2) иногда называют "дейтрон." Как мы можем объяснить, что держит дейтрон вместе? Ну, можно представить себе, что он не так уж отличается от атома обычного водорода, который также содержит две частицы (протон и электрон).

На рис. выше показано, что в атоме водорода ядро ​​и электрон очень далеки друг от друга, в том смысле, что атом гораздо больше, чем ядро (а электрон еще меньше.) Но в дейтроне расстояние между протоном и нейтроном сравнимо с их размерами. Это отчасти объясняет, почему ядерные силы являются гораздо более сложными, чем силы в атоме.

Известно, что электроны имеют небольшую массу по сравнению с протонами и нейтронами. Отсюда следует, что

  • масса атома, по существу близка к массе его ядра,
  • размер атома (по существу размер электронного облака) обратно пропорционален массе электронов и обратно пропорционален общей электромагнитной силе; принцип неопределенности квантовой механики играет решающую роль.

А если ядерные силы аналогичны электромагнитным

Что же с дейтроном? Он так же, как и атом, сделан из двух объектов, но они почти одинаковой массы (массы нейтрона и протона отличаются лишь части примерно на одну 1500-ю часть), так что обе частицы в равной степени важны в определении массы дейтрона и его размера. Теперь предположим, что ядерная сила тянет протон к нейтрону так же, как электромагнитные силы (это не совсем так, но представьте себе, на мгновение); а затем, по аналогии с водородом, мы ожидаем, размер дейтрона обратно пропорциональным массе протона или нейтрона, и обратно пропорциональным величине ядерной силе. Если ее величина была такой же (на определенном расстоянии), как у электромагнитной силы, то это будет означать, что так как протон примерно в 1850 раз тяжелее электрон, то дейтрон (и действительно любое ядро) должно быть по крайней мере в тысячу раз меньше, чем у водорода.

Что дает учет существенной разницы ядерных и электромагнитных сил

Но мы уже догадались, что ядерная сила намного больше электромагнитной (на том же расстоянии), потому что, если это не так, она была бы не в состоянии предотвратить электромагнитное отталкивание между протонами вплоть до распада ядра. Так что протон и нейтрон под ее действием сближаются вместе еще более плотно. И поэтому не удивительно, что дейтрон и другие ядер не просто в одну тысячу, но в сто тысяч раз меньше, чем атомы! Опять же, это только потому, что

  • протоны и нейтроны почти в 2000 раз тяжелее, чем электроны,
  • на этих расстояниях, большая ядерная сила между протонами и нейтронами в ядре во много раз больше, чем соответствующие электромагнитные силы (в том числе электромагнитного отталкивания между протонами в ядре.)

Эта наивная догадка дает примерно правильный ответ! Но это не полностью отражает сложность взаимодействия между протоном и нейтроном. Одна из очевидных проблем состоит в том, что сила, подобная электромагнитной, но с большей притягивающей или отталкивающей способностью, должна очевидно проявляться в повседневной жизни, но мы не наблюдаем ничего подобного. Так что, что-то в этой силе должно отличаться от электрических сил.

Короткий диапазон ядерной силы

Что их отличает, так это то, что удерживающие от распада атомное ядро ядерные силы являются очень важными и большими для протонов и нейтронов, находящихся на очень коротком расстоянии друг от друга, но на определенном расстоянии (так называемом "диапазоне" силы), они падают очень быстро, гораздо быстрее, чем электромагнитные. Диапазон, оказывается, может также быть размером с умеренно большое ядро, только в несколько раз больше, чем протон. Если поместить протон и нейтрон на расстоянии, сравнимом с этим диапазоном, они будут притягиваться друг к другу и образуют дейтон; если их разнести на большее расстояние, они едва ли будут ощущать какое-либо притяжение вообще. На самом деле, если их поместить слишком близко друг к другу, так, что они начнут перекрываться, то они будут на самом деле отталкиваются друг от друга. В этом и проявляется сложность такого понятия, как ядерные силы. Физика продолжает непрерывно развиваться в направлении объяснения механизма их действия.

Физический механизм ядерного взаимодействия

У всякого материального процесса, включая и взаимодействие между нуклонами, должны быть материальные же переносчики. Ими являются кванты ядерного поля - пи-мезоны (пионы), из-за обмена которыми и возникает притяжение между нуклонами.

Согласно принципам квантовой механики, пи-мезоны, то и дело возникая и тут же исчезая, образуют вокруг «голого» нуклона что-то вроде облака, называемого мезонной шубой (вспомните об электронных облаках в атомах). Когда два нуклона, окруженные такими шубами, оказываются на расстоянии порядка 10 -15 м, происходит обмен пионами подобно обмену валентными электронами в атомах при образовании молекул, и между нуклонами возникает притяжение.

Если же расстояния между нуклонами становятся меньше 0,7∙10 -15 м, то они начинают обмениваться новыми частицами - т.наз. ω и ρ-мезонами, вследствие чего между нуклонами возникает не притяжение, а отталкивание.

Ядерные силы: строение ядра от простейшего к большему

Резюмируя все вышесказанное, можно отметить:

  • сильное ядерное взаимодействие гораздо, гораздо слабее, чем электромагнетизм на расстояниях, значительно больших, чем размер типичного ядра, так что мы не сталкиваемся с ним в повседневной жизни; но
  • на коротких расстояниях, сравнимых с ядром, оно становится гораздо сильнее - сила притяжения (при условии, что расстояние не слишком короткое), способна преодолеть электрическое отталкивание между протонами.

Итак, эта сила имеет значение только на расстояниях, сравнимых с размерами ядра. На рисунке ниже показан вид ее зависимости от расстояния между нуклонами.

Большие ядра удерживаются вместе с помощью более или менее той же силы, что держит дейтрон вместе, но детали процесса усложняются, так что их непросто описать. Они также не в полной мере понятны. Хотя основные очертания физики ядра были хорошо изучены в течение десятилетий, многие важные детали все еще активно исследуются.

gastroguru © 2017