Все про алюминий химия. Алюминий: химические свойства и способность вступать в реакции с другими веществами

  • Обозначение - Al (Aluminium);
  • Период - III;
  • Группа - 13 (IIIa);
  • Атомная масса - 26,981538;
  • Атомный номер - 13;
  • Радиус атома = 143 пм;
  • Ковалентный радиус = 121 пм;
  • Распределение электронов - 1s 2 2s 2 2p 6 3s 2 3p 1 ;
  • t плавления = 660°C;
  • t кипения = 2518°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 1,61/1,47;
  • Степень окисления: +3, 0;
  • Плотность (н. у.) = 2,7 г/см 3 ;
  • Молярный объем = 10,0 см 3 /моль.

Алюминий (квасцы) впервые был полуен в 1825 году датчанином Г. К. Эрстедом. Изначально, до открытия промышленного способа получения, алюминий был дорооже золота.

Алюминий является самым распространенным металлом в земной коре (массовая доля составляет 7-8%), и третьим по распространенности среди всех элементов после кислорода и кремния. В свободном виде в проироде алюминий не встречается.

Важнейшие природные соединения алюминия:

  • алюмосиликаты - Na 2 O·Al 2 O 3 ·2SiO 2 ; K 2 O·Al 2 O 3 ·2SiO 2
  • бокситы - Al 2 O 3 ·n H 2 O
  • корунд - Al 2 O 3
  • криолит - 3NaF·AlF 3


Рис. Строение атома алюминия .

Алюминий химически активный металл - на его внешнем электронном уровне находятся три электрона, которые участвуют в образовании ковалентных связей при взаимодействии алюминия с другими химическими элементами (см. Ковалентная связь). Алюминий - сильный восстановитель, во всех соединениях проявляет степень окисления +3.

При комнатной температуре алюминий вступает в реакцию с кислородом, содержащимся в атмосферном воздухе, с образованием прочной оксидной пленки, которая надежно препятствует процессу дальнейшего окисления (корродирования) металла, в результате чего химическая активность алюминия снижается.

Благодаря оксидной пленке алюминий не вступает в реакцию с азотной кислотой при комнатной температуре, поэтому, алюминиевая посуда является надежной тарой для хранения и трансопртирования азотной кислоты.

Физические свойства алюминия:

  • металл серебристо-белого цвета;
  • твердый;
  • прочный;
  • легкий;
  • пластичный (протягивается в тонкую проволоку и фольгу);
  • обладает высокой электро- и теплопроводностью;
  • температура плавления 660°C
  • природный алюминий состоит из одного изотопа 27 13 Al

Химические свойства алюминия :

  • при снятии оксидной пленки алюминий реагирует с водой:
    2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 ;
  • при комнатной температуре вступает в реакции с бромом и хлором с образованием солей:
    2Al + 3Br 2 = 2AlCl 3 ;
  • при высокой температуре алюминий реагирует с кислородом и серой (реакция сопровождается выделением большого кол-ва тепла):
    4Al + 3O 2 = 2Al 2 O 3 + Q;
    2Al + 3S = Al 2 S 3 + Q;
  • при t=800°C реагирует с азотом:
    2Al + N 2 = 2AlN;
  • при t=2000°C реагирует с углеродом:
    2Al + 3C = Al 4 C 3 ;
  • восстанавливает многие металлы из их оксидов - алюмотермией (при t до 3000°C) получают промышленным способом вольфрам, ванадий, титан, кальций, хром, железо, марганец:
    8Al + 3Fe 3 O 4 = 4Al 2 O 3 + 9Fe;
  • с соляной и разбавленной серной кислотой реагирует с выделением водорода:
    2Al + 6HCl = 2AlCl 3 + 3H 2 ;
    2Al + 3H 2 SO 4 = Al 2 (SO 4) 3 + 3H 2 ;
  • с концентрированной серной кислотой реагирует при высокой температуре:
    2Al + 6H 2 SO 4 = Al 2 (SO 4) 3 + 3SO 2 + 6H 2 O;
  • со щелочами реагирует с выделением водорода и образованием комплексных солей - реакция идет в несколько этапов: при погружении алюминия в раствор щелочи происходит растворение прочной защитной оксидной пленки, которая находится на поверхности металла; после растворения пленки, алюминий, как активиный металл, реагирует с водой с образованием гидроксида алюминия, который взаимодействует со щелочью, как амфотерный гидроксид:
    • Al 2 O 3 +2NaOH = 2NaAlO 2 +H 2 O - растворение оксидной пленки;
    • 2Al+6H 2 O = 2Al(OH) 3 +3H 2 - взаимодействие алюминия с водой с образованием гидроксида алюминия;
    • NaOH+Al(OH) 3 = NaAlO 2 +2H 2 O - взаимодействие гидроксида алюминия со щелочью
    • 2Al+2NaOH+2H 2 O = 2NaAlO 2 +3H 2 - суммарное уравнение реакции алюминия со щелочью.

Соединения алюминия

Al 2 O 3 (глинозем)

Оксид алюминия Al 2 O 3 является белым, очень тугоплавким и твердым веществом (в природе тверже только алмаз, карборунд и боразон).

Свойства глинозема:

  • не растворяется в воде и вступает с ней в реакцию;
  • является амфотерным веществом, реагируя с кислотами и щелочами:
    Al 2 O 3 + 6HCl = 2AlCl 3 + 3H 2 O;
    Al 2 O 3 + 6NaOH + 3H 2 O = 2Na 3 ;
  • как амфотерный оксид реагирует при сплавлении с оксидами металлов и солями, образуя алюминаты:
    Al 2 O 3 + K 2 O = 2KAlO 2 .

В промышленности глинозем получают из бокситов. В лабораторных условиях глинозем можно получить сжигая алюминий в кислороде:
4Al + 3O 2 = 2Al 2 O 3 .

Применение глинозема :

  • для получения алюминия и электротехнической керамики;
  • в качестве абразивного и огнеупорного материала;
  • в качестве катализатора в реакциях органического синтеза.

Al(OH) 3

Гидроксид алюминия Al(OH) 3 является белым твердым кристаллическим веществом, которое получается в результате обменной реакции из раствора гидроксида алюминия - выпадает в виде белого студенистого осадка, кристаллизующегося со временем. Это амфотерное соединение почти не растворимое в воде:
Al(OH) 3 + 3NaOH = Na 3 ;
Al(OH) 3 + 3HCl = AlCl 3 + 3H 2 O.

  • взаимодействие Al(OH) 3 с кислотами:
    Al(OH) 3 +3H + Cl = Al 3+ Cl 3 +3H 2 O
  • взаимодействие Al(OH) 3 со щелочами:
    Al(OH) 3 +NaOH - = NaAlO 2 - +2H 2 O

Гидроксид алюминия получают путем действия щелочей на растворы солей алюминия:
AlCl 3 + 3NaOH = Al(OH) 3 + 3NaCl.

Получение и применение алюминия

Алюминий достаточно трудно выделить из природных соединений химическим способом, что объясняется высокой прочностью связей в оксиде алюминия, поэтому, для промышленного получения алюминия применяют электролиз раствора глинозема Al 2 O 3 в расплавленном криолите Na 3 AlF 6 . В результате процесса алюминий выделяется на катоде, на аноде - кислород:

2Al 2 O 3 → 4Al + 3O 2

Исходным сырьем служат бокситы. Электролиз протекает при температуре 1000°C: температура плавления оксида алюминия составляет 2500°C - проводить электролиз при такой температуре не представляется возможным, поэтому оксид алюминия растворяют в расплавленном криолите, и уже затем полученный электролит используют при электролизе для получения алюминия.

Применение алюминия:

  • алюминиевые сплавы широко применяются в качестве конструкционных материалов в автомобиле-, самолето-, судостроении: дюралюминий, силумин, алюминиевая бронза;
  • в химической промышленности в качестве восстановителя;
  • в пищевой промышленности для изготовления фольги, посуды, упаковочного материала;
  • для изготовления проводов и проч.

1. Не взаимодействует с Н 2 .

2. Как активный металл реагирует почти со всеми неметаллами без нагревания, если снять оксидную пленку.

4Al + 3O 2 → 2Al 2 O 3

2Al + 3Cl 2 → 2AlCl 3

Al + P → AlP

3. Реагирует с Н 2 О:

Алюминий – активный металл с большим сродством к кислороду. На воздухе покрывается защитной пленкой оксида. Если пленку уничтожить, то алюминий активно взаимодействует с водой.

2Al + 6H 2 O = 2Al(OH) 3 + 3H 2 ­

4. С разбавленными кислотами:

2Al + 6HCl → 2AlCl 3 + 3H 2

2Al + 3H 2 SO 4 → Al 2 (SO 4) 3 + 3H 2

С концентрированными HNO 3 и H 2 SO 4 при обычных условиях не реагирует, а только при нагревании.

5. Со щелочами:

2Al + 2NaOH 2NaAlO 2 + 3H 2

С водными растворами щелочей алюминий образует комплексы:

2Al + 2NaOH + 10 H 2 O = 2Na + - + 3H 2

или Na,

Na 3 , Na 2 – гидроксоалюминаты. Продукт зависит от концентрации щелочи.

4Al + 3O 2 → 2Al 2 O 3

Al 2 O 3 (глинозем) встречается в природе в виде минерала корунда (по твердости близок к алмазу). Драгоценные камни рубин и сапфир – тоже Al 2 O 3 , окрашенный примесями железа, хрома

Оксид алюминия – амфотерен. При сплавлении его со щелочами получаются соли метаалюминиевой кислоты HAlO 2 . Например:

Также взаимодействует с кислотами

Белый студенистый осадок гидроксида алюминия растворяется как в кислотах

Al(OH) 3 + 3HCl = AlCl 3 + 3 H 2 O,

так и в избытке растворов щелочей, проявляет амфотерность

Al(OH) 3 + NaOH + 2H 2 O = Na

При сплавлении со щелочами гидроксид алюминия образует соли метаалюминиевой или ортоалюминиевой кислот

Аl(OH) 3 Al 2 O 3 + H 2 O

Соли алюминия сильно гидролизуются. Соли алюминия и слабых кислот превращаются в основные соли или подвергаются полному гидролизу:

AlCl 3 + HOH ↔ AlOHCl 2 + HCl

Al +3 + HOH ↔ AlOH +2 + H + pH>7 протекает по I ступени, но при нагревании может протекать и по II ступени.

AlOHCl 2 + HOH ↔ Al(OH) 2 Cl + HCl

AlOH +2 + HOH ↔ Al(OH) 2 + + H +

При кипячении может протекать и III ступень

Al(OH) 2 Cl + HOH ↔ Al(OH) 3 + HCl

Al(OH) 2 + + HOH ↔ Al(OH) 3 + H +

Соли алюминия хорошо растворимы.

AlCl 3 – хлорид алюминия является катализатором при переработке нефти и различных органических синтезах.

Al 2 (SO 4) 3 ×18H 2 O – сульфат алюминия применяется для очистки воды от коллоидных частиц, захватываемых Al(OH) 3 образовавшихся при гидролизе и снижении жесткости

Al 2 (SO 4) 3 + Ca(HCO 3) 2 = Al(OH) 3 + CO 2 + CaSO 4 ↓

В кожевенной промышленности служит протравой при крошении хлопчатобумажных тканей – KAl(SO 4) 2 ×12H 2 O –сульфат калия-алюминия (алюмокалиевые квасцы).

Основное применение алюминия – производство сплавов на его основе. Дюралюмин – сплав алюминия, меди, магния и марганца.

Силумин – алюминий и кремний.

Основное их достоинство – малая плотность, удовлетворительная стойкость против атмосферной коррозии. Из алюминиевых сплавов изготавливают корпуса искусственных спутников Земли и космических кораблей.

Используется алюминий как восстановитель при выплавке металлов (алюминотермия)

Cr 2 O 3 + 2 Al t = 2Cr + Al 2 O 3 .

Также применяют для термитной сварки металлических изделий (смесь алюминия и оксида железа Fe 3 O 4) называемая термитом дает температуру около 3000°С.

(А l ), галлий (Ga ), индий (In ) и таллий (Т l ).

Как видно из приведенных данных, все эти элементы были открыты в XIX столетии.

Открытие металлов главной подгруппы III группы

В

Al

Ga

In

Tl

1806 г.

1825 г.

1875 г.

1863 г.

1861 г.

Г.Люссак,

Г.Х.Эрстед

Л. де Буабодран

Ф.Рейх,

У.Крукс

Л. Тенар

(Дания)

(Франция)

И.Рихтер

(Англия)

(Франция)



(Германия)


Бор представляет собой неметалл. Алюминий - переход­ный металл, а галлий, индий и таллий - полноценные метал­лы. Таким образом, с ростом радиусов атомов элементов каждой группы периодической системы металлические свой­ства простых веществ усиливаются.

В данной лекции мы подробнее рассмотрим свойства алюминия.

1. Положение алюминия в таблице Д. И. Менделеева. Строение атома, проявляемые степени окисления.

Элемент алюминий расположен в III группе, главной «А» подгруппе, 3 периоде периодической системы, порядковый номер №13, относительная атомная масса Ar (Al ) = 27. Его соседом слева в таблице является магний – типичный металл, а справа – кремний – уже неметалл. Следовательно, алюминий должен проявлять свойства некоторого промежуточного характера и его соединения являются амфотерными.

Al +13) 2) 8) 3 , p – элемент,

Основное состояние

1s 2 2s 2 2p 6 3s 2 3p 1

Возбуждённое состояние

1s 2 2s 2 2p 6 3s 1 3p 2

Алюминий проявляет в соединениях степень окисления +3:

Al 0 – 3 e - → Al +3

2. Физические свойства

Алюминий в свободном виде - се­ребристо-белый металл, обладающий высокой тепло- и электро­проводностью. Температура плавления650 о С. Алюминий имеет невысокую плотность (2,7 г/см 3) - при­мерно втрое меньше, чем у железа или меди, и одновременно - это прочный металл.

3. Нахождение в природе

По распространённости в природе занимает 1-е среди металлов и 3-е место среди элементов , уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры.

В природе алюминий встречается только в соединениях (минералах).

Некоторые из них:

· Бокситы - Al 2 O 3 H 2 O (с примесями SiO 2 , Fe 2 O 3 , CaCO 3)

· Нефелины - KNa 3 4

· Алуниты - KAl(SO 4) 2 2Al(OH) 3

· Глинозёмы (смеси каолинов с песком SiO 2 , известняком CaCO 3 , магнезитом MgCO 3)

· Корунд - Al 2 O 3

· Полевой шпат (ортоклаз) - K 2 O×Al 2 O 3 ×6SiO 2

· Каолинит - Al 2 O 3 ×2SiO 2 × 2H 2 O

· Алунит - (Na,K) 2 SO 4 ×Al 2 (SO 4) 3 ×4Al(OH) 3

· Берилл - 3ВеО Al 2 О 3 6SiO 2

Боксит

Al 2 O 3

Корунд

Рубин

Сапфир

4. Химические свойства алюминия и его соединений

Алюминий легко взаимодействует с кислородом при обычных условиях и покрыт оксидной пленкой (она придает матовый вид).

ДЕМОНСТРАЦИЯ ОКСИДНОЙ ПЛЁНКИ

Её толщина 0,00001 мм, но благодаря ней алюминий не коррозирует. Для изученияхимических свойств алюминия оксидную пленку удаляют. (При помощи наждачной бумаги, или химически: сначала опуская в раствор щелочи для удаления оксидной пленки, а затем в раствор солей ртути для образования сплава алюминия со ртутью – амальгамы).

I . Взаимодействие с простыми веществами

Алюминий уже при комнатной температуре активно реагирует со всеми галогенами, образуя галогениды. При нагревании он взаимодействует с серой (200 °С), азотом (800 °С), фосфором (500 °С) и углеродом (2000 °С), с йодом в присутствии катализатора - воды:

2А l + 3 S = А l 2 S 3 (сульфид алюминия),

2А l + N 2 = 2А lN (нитрид алюминия),

А l + Р = А l Р (фосфид алюминия),

4А l + 3С = А l 4 С 3 (карбид алюминия).

2 Аl +3 I 2 =2 A l I 3 (йодид алюминия) ОПЫТ

Все эти соединения полностью гидролизуются с образованием гидроксида алюминия и, соответственно, сероводорода, аммиака, фосфина и метана:

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 S­

Al 4 C 3 + 12H 2 O = 4Al(OH) 3 + 3CH 4 ­

В виде стружек или порошка он ярко горит на воздухе, выде­ляя большое количество теплоты:

4А l + 3 O 2 = 2А l 2 О 3 + 1676 кДж.

ГОРЕНИЕ АЛЮМИНИЯ НА ВОЗДУХЕ

ОПЫТ

II . Взаимодействие со сложными веществами

Взаимодействие с водой :

2 Al + 6 H 2 O=2 Al (OH) 3 +3 H 2

без оксидной пленки

ОПЫТ

Взаимодействие с оксидами металлов:

Алюминий – хороший восстановитель, так как является одним из активных металлов. Стоит в ряду активности сразу после щелочно-земельных металлов. Поэтому восстанавливает металлы из их оксидов . Такая реакция – алюмотермия – используется для получения чистых редких металлов, например таких, как вольфрам, ваннадий и др.

3 Fe 3 O 4 +8 Al =4 Al 2 O 3 +9 Fe + Q

Термитная смесь Fe 3 O 4 иAl (порошок) –используется ещё и в термитной сварке.

С r 2 О 3 + 2А l = 2С r + А l 2 О 3

Взаимодействие с кислотами :

С раствором серной кислоты:2 Al+ 3 H 2 SO 4 =Al 2 (SO 4) 3 +3 H 2

С холодными концентрированными серной и азотной не реагирует (пассивирует). Поэтому азотную кислоту перевозят в алюминиевых цистернах. При нагревании алюминий способен восстанавливать эти кислоты без выделения водорода:

2А l + 6Н 2 S О 4(конц) = А l 2 (S О 4) 3 + 3 S О 2 + 6Н 2 О,

А l + 6Н NO 3(конц) = А l (NO 3 ) 3 + 3 NO 2 + 3Н 2 О.

Взаимодействие со щелочами .

2 Al + 2 NaOH + 6 H 2 O =2 Na [ Al (OH ) 4 ] +3 H 2

ОПЫТ

Na l (ОН) 4 ]тетрагидроксоалюминат натрия

По предложению химика Горбова, в русско-японскую войну эту реакцию использовали для получения водорода для аэростатов.

С растворами солей:

2 Al + 3 CuSO 4 = Al 2 (SO 4 ) 3 + 3 Cu

Если поверхность алюминия потереть солью ртути, то происходит реакция:

2 Al + 3 HgCl 2 = 2 AlCl 3 + 3 Hg

Выделившаяся ртуть растворяет алюминий, образуяамальгаму .

Обнаружение ионов алюминия в растворах : ОПЫТ


5. Применение алюминия и его соединений

Физические и химические свойства алюминия обусловили его широкое применение в технике. Крупным потребителем алюминияявляется авиационная промышленность : самолет на 2/3 состоит из алюминия и его сплавов. Самолет из стали оказался бы слишком тяжелым и смог бы нести гораздо меньше пассажиров. Поэтому алюминий называют крылатым металлом. Из алюминия изготовляют кабели и провода : при одинаковой электрической проводимости их масса в 2 раза меньше, чем соответствующих изделий из меди.

Учитывая коррозионную устойчивость алюминия, из него изготовляют детали аппаратов и тару для азотной кислоты . Порошок алюминия является основой при изготовлении серебристой краски для защиты железных изделий от коррозии, а также для отражениятепловых лучей такой краской покрывают нефтехранилища, костюмы пожарных.

Оксид алюминия используется для получения алюминия, а также как огнеупорный материал.

Гидроксид алюминия – основной компонент всем известных лекарств маалокса, альмагеля, которые понижают кислотность желудочного сок.

Соли алюминия сильногидролизуются. Данное свойство применяют в процессе очистки воды. В очищаемую воду вводят сульфат алюминия и небольшое количество гашеной извести для нейтрализации образующейся кислоты. В результате выделяется объемный осадок гидроксида алюминия, который, оседая, уносит с собой взвешенные частицы мути и бактерии.

Таким образом, сульфат алюминия является коагулянтом.

6. Получение алюминия

1) Современный рентабельный способ получения алюминия был изобретен американцем Холлом и французом Эру в 1886 году. Он заключается в электролизе раствора оксида алюминия в расплавленном криолите. Расплавленный криолит Na 3 AlF 6 растворяет Al 2 O 3, как вода растворяет сахар. Электролиз “раствора” оксида алюминия в расплавленном криолите происходит так, как если бы криолит был только растворителем, а оксид алюминия - электролитом.

2Al 2 O 3 эл.ток →4Al + 3O 2

В английской “Энциклопедии для мальчиков и девочек” статья об алюминии начинается следующими словами: “23 февраля 1886 года в истории цивилизации начался новый металлический век - век алюминия. В этот день Чарльз Холл, 22-летний химик, явился в лабораторию своего первого учителя с дюжиной маленьких шариков серебристо-белого алюминия в руке и с новостью, что он нашел способ изготовлять этот металл дешево и в больших количествах”. Так Холл сделался основоположником американской алюминиевой промышленности и англосаксонским национальным героем, как человек, сделавшим из науки великолепный бизнес.

2) 2Al 2 O 3 +3 C=4 Al+3 CO 2

ЭТО ИНТЕРЕСНО:

  • Металлический алюминий первым выделил в 1825 году датский физик Ханс Кристиан Эрстед. Пропустив газообразный хлор через слой раскаленного оксида алюминия, смешанного с углем, Эрстед выделил хлорид алюминия без малейших следов влаги. Чтобы восстановить металлический алюминий, Эрстеду понадобилось обработать хлорид алюминия амальгамой калия. Через 2 года немецкий химик Фридрих Вёллер. Усовершенствовал метод, заменив амальгаму калия чистым калием.
  • В 18-19 веках алюминий был главным ювелирным металлом. В 1889 году Д.И.Менделеев в Лондоне за заслуги в развитии химии был награжден ценным подарком – весами, сделанными из золота и алюминия.
  • К 1855 году французский ученыйСен- Клер Девиль разработал способ получения металлического алюминия в технических масштабах. Но способ был очень дорогостоящий. Девиль пользовался особым покровительством НаполеонаIII, императораФранции. В знаксвоей преданности и благодарности Девиль изготовил для сына Наполеона, новорожденного принца, изящно гравированную погремушку – первое «изделие ширпотреба» из алюминия. Наполеон намеревался даже снарядить своих гвардейцев алюминиевыми кирасами, но цена оказалась непомерно высокой. В то время 1 кг алюминия стоил 1000 марок, т.е. в 5 раз дороже серебра. Только после изобретения электролитического процесса алюминий по своей стоимости сравнялся с обычными металлами.
  • А знаете ли вы, что алюминий, поступая в организм человека, вызывает расстройство нервной системы.При его избытке нарушается обмен веществ. А защитными средствами является витамин С, соединения кальция, цинка.
  • При сгорании алюминия в кислороде и фторе выделяется много тепла. Поэтому его используют как присадку к ракетному топливу. Ракета "Сатурн" сжигает за время полёта 36 тонн алюминиевого порошка. Идея использования металлов в качестве компонента ракетного топлива впервые высказал Ф. А. Цандер.

ТРЕНАЖЁРЫ

Тренажёр №1 - Характеристика алюминия по положению в Периодической системе элементов Д. И. Менделеева

Тренажёр №2 - Уравнения реакций алюминия с простыми и сложными веществами

Тренажёр №3 - Химические свойства алюминия

ЗАДАНИЯ ДЛЯ ЗАКРЕПЛЕНИЯ

№1. Для получения алюминия из хлорида алюминия в качестве восстановителя можно использовать металлический кальций. Составьте уравнение данной химической реакции, охарактеризуйте этот процесс при помощи электронного баланса.
Подумайте! Почему эту реакцию нельзя проводить в водном растворе?

№2. Закончите уравнения химических реакций :
Al + H 2 SO 4 (раствор ) ->
Al + CuCl 2 ->
Al + HNO 3 (
конц ) - t ->
Al + NaOH + H 2 O ->

№3. Осуществите превращения:
Al -> AlCl 3 -> Al -> Al 2 S 3 -> Al(OH) 3 - t ->Al 2 O 3 -> Al

№4. Решите задачу:
На сплав алюминия и меди подействовали избытком концентрированного раствора гидроксида натрия при нагревании. Выделилось 2,24 л газа (н.у.). Вычислите процентный состав сплава, если его общая масса была 10 г?

Алюминия оксид (глинозем) А1 2 О 3 , бесцв. кристаллы ; т. пл. 2044°С; т. кип. 3530 °С. Единственная стабильная до 2044°С кристаллич. модификация алюминия оксида-А1 2 О 3 (корунд ): решетка ромбоэдрич., а = 0,512 нм,= 55,25° (для гексагон. установки а = 0,475 нм, с = 1,299 нм, пространств. группа D 6 3d , z = 2); плотн. 3,99 г/см 3 ;Н° пл 111,4 кДж/моль ; ур-ния температурной зависимости: теплоемкости С° р = = 114,4 + 12,9*10 -3 Т - 34,3*10 5 Т 2 ДжДмоль*К) (298Т 1800 К), давления пара Igp (Па) = -54800/7+1,68 (до ~ 3500 К); температурный коэф. линейного расширения (7,2-8,6)*10 -6 К -1 (300Т1200 К); теплопроводность спеченного при 730°С образца 0,35 Вт/(моль*К); твердость по Моосу 9; показатель преломления для обыкновенного луча n 0 1,765, для необыкновенного п е 1,759.

Оксид алюминия (Al2O3) обладает исключительным набором свойств, таких как:

  • Высокая твердость
  • Хорошая теплопроводность
  • Отличная коррозионная стойкость
  • Низкая плотность
  • Сохранение прочности в широком диапазоне температур
  • Электроизоляционные свойства
  • Невысокая стоимость относительно других керамических материалов

Все эти сочетания делают материал не заменимым при изготовлении коррозионностойких, износостойких, электроизоляционных и термостойких изделий для самых различных отраслей промышленности.

Основные области применения:

  • Футеровка мельниц, гидроциклонов, бетономешалок, экструдеров, транспортеров, труб и прочего изнашиваемого оборудования
  • Кольца торцовых уплотнений
  • Фильеры, проводки, направляющие
  • Подшипники скольжения, валы и футеровка проточных частей химических насосов
  • Мелящие тела
  • Части бумагоделательного оборудования
  • Горелки
  • Насадки экструдеров (керны)
  • Тигли
  • Элементы клапанов и запорной арматуры
  • Сопла для аппаратов аргонно-дуговой сварки
  • Электроизоляторы

Существует несколько модификаций оксида алюминия в зависимости от содержания основной фазы и примесей, которые отличаются прочностью и химической стойкостью

Гидроксид алюминия

Гидроксид алюминия Al(OH) 3 – бесцветное твердое вещество, нерастворимое в воде, входит в состав многих бокситов. Существует в четырех полиморфных модификациях. На холоде образуется α-Al(OH) 3 – байерит, а при осаждении из горячего раствора γ-Al(OH) 3 – гиббсит (гидаргилит), обе кристаллизуются в моноклинной сингонии, имеют слоистое строение, слои состоят из октаэдров , между слоями действует водородная связь. Существует также триклинный гиббсит γ’-Al(OH) 3 , триклинный нордстрандит β-Al(OH) 3 и две модификации оксогидроксида AlOOH – орторомбические бемит и диаспор. Аморфный гидроксид алюминия имеет переменный состав Al 2 O 3 · nH 2 O. При нагревании выше 180°С разлагается.

Химические свойства

Гидроксид алюминия – типичное амфотерное соединение, свежеполученный гидроксид растворяется в кислотах и щелочах:

2Al(OH) 3 + 6HCl = 2AlCl 3 + 6H 2 O

Al(OH) 3 + NaOH + 2H 2 O = Na.

При нагревании разлагается, процесс дегидратации довольно сложен и схематично может быть представлен следующим образом:

Al(OH) 3 = AlOOH + H 2 O;

2AlOOH = Al 2 O 3 + H 2 O.

Гидроксид алюминия - химическое вещество, которое представляет собой соединение оксида алюминия с водой. Может пребывать в жидком и твердом состояниях. Жидкий гидроксид является желеподобным прозрачным веществом, которое очень плохо растворяется в воде. Твердый гидроксид представляет собой кристаллическое вещество белого цвета, которое обладает пассивными химическими свойствами и не реагирует практически ни с одним другим элементом или соединением.

Хлорид алюминия

При обычном давлении возгоняется при 183 °C (под давлением плавится при 192,6 °C). В воде хорошо растворим (44,38 г в 100 г H 2 O при 25 °C); вследствие гидролиза дымит во влажном воздухе, выделяя HCl. Из водных растворов выпадает кристаллогидрат AlCl 3 · 6H 2 O - желтовато-белые расплывающиеся кристаллы. Хорошо растворим во многих органических соединениях (в этаноле - 100 г в 100 г спирта при 25 °C, в ацетоне, дихлорэтане , этиленгликоле, нитробензоле, тетрахлоруглероде и др.); однако практически не растворяется в бензоле и толуоле.

Сульфат алюминия

Сульфат алюминия - это соль белого цвета с серым, голубым или розовым оттенком, при обычных условиях существует в виде кристаллогидрата Al 2 (SO 4) 3 ·18H 2 O - бесцветных кристаллов. При нагревании теряет воду не плавясь, при прокаливании распадается на Al 2 O 3 и SO 3 и O 2 . Хорошо растворяется в воде. Технический сульфат алюминия можно получить, обрабатывая серной кислотой боксит или глину, а чистый продукт, - растворяя Al(OH) 3 в горячей концентрированной H 2 SO 4 .

Сульфат алюминия применяется как коагулянт для очистки воды хозяйственно-питьевого и промышленного назначения и для использования в бумажной, текстильной, кожевенной и других отраслях промышленности.

Используется в качестве пищевой добавки E-520

Карбид алюминия

Карбид алюминия получается прямой реакцией алюминия с углеродом в дуговой печи.

4 A l + 3 C ⟶ A l 4 C 3 {\displaystyle {\mathsf {4Al+3C\longrightarrow Al_{4}C_ Небольшое количество карбида алюминия является нормой в примеси технического карбида кальция. В электролитическом производстве алюминия данное соединение получается как продукт коррозии в графитовых электродах. Получается при реакции углерода с оксидом алюминия:

Железо с алюминием

Ални - группа магнитотвёрдых (высококоэрцитивных) сплавов железо (Fe) - никель (Ni) - алюминий (Al).

Легирование ални-сплавов улучшает их магнитные характеристики, применяется легирование медью (например, сплав 24 % никеля, 4 % меди, 13 % алюминия и 59 % железа), кобальтом (сплавы альнико и магнико ). Примесь углерода снижает магнитные свойства сплава, его содержание не должно превышать 0,03 %.

Ални-сплавы характеризуются высокой твёрдостью и хрупкостью, поэтому для изготовления постоянных магнитов из них применяется литьё.

Алюминат натрия

Алюминат натрия - неорганическое соединение, сложный окисел натрия и алюминия с формулой NaAlO 2 , белое аморфное вещество, реагирует с водой.

Ортоалюминиевая кислота

Алюмина"ты, соли алюминиевых кислот: ортоалюминиевой H3 AlO3 , метаалюминиевой HAlO2 и др. В природе наиболее распространены Алюминаты общей формулы R, где R - Mg, Са, Be, Zn и др. Среди них различают: 1) октаэдрические разновидности, т. н. шпинели - Mg (благородная шпинель), Zn (ганитовая или цинковая шпинель) и др. и 2) ромбические разновидности - Be (хризоберилл) и др. (в формулах минералов атомы, составляющие структурную группу, обычно заключают в квадратные скобки).

Алюминаты щелочных металлов получают при взаимодействии Al или Al(OH)3 с едкими щелочами: Al(OH)3 + KOH = KAlO2 + 2H2 O. Из них а люминаты натрия NaAlO2, образующийся при щелочном процессе получения глинозёма, применяют в текстильном производстве как протраву. Алюминаты щёлочноземельных металлов получают сплавлением их окислов с Al2 O3 ; из них алюминаты кальция CaAl2 O4 служит главной составной частью быстро твердеющего глинозёмистого цемента.

Практическое значение приобрели Алюминаты редкоземельных элементов. Их получают совместным растворением окислов редкоземельных элементов R2 03 и Al(NO3 )3 в азотной кислоте, выпариванием полученного раствора до кристаллизации солей и прокаливанием последних при 1000-1100°С. Образование Алюминаты контролируется рентгеноструктурным, а также химическим фазовым анализом. Последний основан на различной растворимости исходных окислов и образуемого соединения (А., например, устойчивы в уксусной кислоте, в то время как окислы редкоземельных элементов хорошо растворяются в ней). Алюминаты редкоземельных элементов обладают большой химической стойкостью, зависящей от температур их предварительного обжига; в воде устойчивы при высоких температурах (до 350°С) под давлением. Наилучший растворитель Алюминаты редкоземельных элементов - соляная кислота. Алюминаты редкоземельных элементов отличаются высокой тугоплавкостью и характерной окраской. Их плотности составляют от 6500 до 7500 кг /м3 .

Одними из самых удобных в обработке материалов являются металлы. Среди них также есть свои лидеры. Так, например, основные свойства алюминия известны людям уже давно. Они настолько подходят для применения в быту, что данный металл стал очень популярным. Каковы же как простого вещества и как атома, рассмотрим в данной статье.

История открытия алюминия

Издавна человеку было известно соединение рассматриваемого металла - Оно использовалось как средство, способное набухать и связывать между собой компоненты смеси, это было необходимо и при выделке кожаных изделий. О существовании в чистом виде оксида алюминия стало известно в XVIII веке, во второй его половине. Однако при этом получено не было.

Сумел же выделить металл из его хлорида впервые ученый Х. К. Эрстед. Именно он обработал амальгамой калия соль и выделил из смеси серый порошок, который и был алюминием в чистом виде.

Тогда же стало понятно, что химические свойства алюминия проявляются в его высокой активности, сильной восстановительной способности. Поэтому долгое время с ним никто больше не работал.

Однако в 1854 году француз Девиль смог получить слитки металла методом электролиза расплава. Этот способ актуален и по сей день. Особенно массовое производство ценного материала началось в XX веке, когда были решены проблемы получения большого количества электроэнергии на предприятиях.

На сегодняшний день данный металл - один из самых популярных и применяемых в строительстве и бытовой промышленности.

Общая характеристика атома алюминия

Если характеризовать рассматриваемый элемент по положению в периодической системе, то можно выделить несколько пунктов.

  1. Порядковый номер - 13.
  2. Располагается в третьем малом периоде, третьей группе, главной подгруппе.
  3. Атомная масса - 26,98.
  4. Количество валентных электронов - 3.
  5. Конфигурация внешнего слоя выражается формулой 3s 2 3p 1 .
  6. Название элемента - алюминий.
  7. выражены сильно.
  8. Изотопов в природе не имеет, существует только в одном виде, с массовым числом 27.
  9. Химический символ - AL, в формулах читается как "алюминий".
  10. Степень окисления одна, равна +3.

Химические свойства алюминия полностью подтверждаются электронным строением его атома, ведь имея большой атомный радиус и малое сродство к электрону, он способен выступать в роли сильного восстановителя, как и все активные металлы.

Алюминий как простое вещество: физические свойства

Если говорить об алюминии, как о простом веществе, то он представляет собой серебристо-белый блестящий металл. На воздухе быстро окисляется и покрывается плотной оксидной пленкой. Тоже самое происходит и при действии концентрированных кислот.

Наличие подобной особенности делает изделия из этого металла устойчивыми к коррозии, что, естественно, очень удобно для людей. Поэтому и находит такое широкое применение в строительстве именно алюминий. также еще интересны тем, что данный металл очень легкий, при этом прочный и мягкий. Сочетание таких характеристик доступно далеко не каждому веществу.

Можно выделить несколько основных физических свойств, которые характерны для алюминия.

  1. Высокая степень ковкости и пластичности. Из данного металла изготовляют легкую, прочную и очень тонкую фольгу, его же прокатывают в проволоку.
  2. Температура плавления - 660 0 С.
  3. Температура кипения - 2450 0 С.
  4. Плотность - 2,7 г/см 3 .
  5. Кристаллическая решетка объемная гранецентрированная, металлическая.
  6. Тип связи - металлическая.

Физические и химические свойства алюминия определяют области его применения и использования. Если говорить о бытовых сторонах, то большую роль играют именно уже рассмотренные нами выше характеристики. Как легкий, прочный и антикоррозионный металл, алюминий применяется в самолето- и кораблестроении. Поэтому эти свойства очень важно знать.

Химические свойства алюминия

С точки зрения химии, рассматриваемый металл - сильный восстановитель, который способен проявлять высокую химическую активность, будучи чистым веществом. Главное - это устранить оксидную пленку. В этом случае активность резко возрастает.

Химические свойства алюминия как простого вещества определяются его способностью вступать в реакции с:

  • кислотами;
  • щелочами;
  • галогенами;
  • серой.

С водой он не взаимодействует при обычных условиях. При этом из галогенов без нагревания реагирует только с йодом. Для остальных реакций нужна температура.

Можно привести примеры, иллюстрирующие химические свойства алюминия. Уравнения реакций взаимодействия с:

  • кислотами - AL + HCL = AlCL 3 + H 2 ;
  • щелочами - 2Al + 6H 2 O + 2NaOH = Na + 3Н 2 ;
  • галогенами - AL + Hal = ALHal 3 ;
  • серой - 2AL + 3S = AL 2 S 3 .

В целом, самое главное свойство рассматриваемого вещества - это высокая способность к восстановлению других элементов из их соединений.

Восстановительная способность

Восстановительные свойства алюминия хорошо прослеживаются на реакциях взаимодействия с оксидами других металлов. Он легко извлекает их из состава вещества и позволяет существовать в простом виде. Например: Cr 2 O 3 + AL = AL 2 O 3 + Cr.

В металлургии существует целая методика получения веществ, основанная на подобных реакциях. Она получила название алюминотермии. Поэтому в химической отрасли данный элемент используется именно для получения других металлов.

Распространение в природе

По распространенности среди других элементов-металлов алюминий занимает первое место. Его в земной коре содержится 8,8 %. Если же сравнивать с неметаллами, то место его будет третьим, после кислорода и кремния.

Вследствие высокой химической активности он не встречается в чистом виде, а лишь в составе различных соединений. Так, например, известно множество руд, минералов, горных пород, в состав которых входит алюминий. Однако добывается он только из бокситов, содержание которых в природе не слишком велико.

Самые распространенные вещества, содержащие рассматриваемый металл:

  • полевые шпаты;
  • бокситы;
  • граниты;
  • кремнезем;
  • алюмосиликаты;
  • базальты и прочие.

В небольшом количестве алюминий обязательно входит в состав клеток живых организмов. Некоторые виды плаунов и морских обитателей способны накапливать этот элемент внутри своего организма в течение жизни.

Получение

Физические и химические свойства алюминия позволяют получать его только одним способом: электролизом расплава соответствующего оксида. Однако процесс этот технологически сложен. Температура плавления AL 2 O 3 превышает 2000 0 С. Из-за этого подвергать электролизу непосредственно его не получается. Поэтому поступают следующим образом.


Выход продукта составляет 99,7 %. Однако возможно получение и еще более чистого металла, который используется в технических целях.

Применение

Механические свойства алюминия не столь хороши, чтобы применять его в чистом виде. Поэтому чаще всего используются сплавы на основе данного вещества. Таких много, можно назвать самые основные.

  1. Дюралюминий.
  2. Алюминиево-марганцевые.
  3. Алюминиево-магниевые.
  4. Алюминиево-медные.
  5. Силумины.
  6. Авиаль.

Основное их отличие - это, естественно, сторонние добавки. Во всех основу составляет именно алюминий. Другие же металлы делают материал более прочным, стойким к коррозии, износоустойчивым и податливым в обработке.

Можно назвать несколько основных областей применения алюминия как в чистом виде, так и в виде его соединений (сплавов).


Вместе с железом и его сплавами алюминий - самый важный металл. Именно эти два представителя периодической системы нашли самое обширное промышленное применение в руках человека.

Свойства гидроксида алюминия

Гидроксид - самое распространенное соединение, которое образует алюминий. Свойства химические его такие же, как и у самого металла, - он амфотерный. Это значит, что он способен проявлять двойственную природу, вступая в реакции как с кислотами, так и со щелочами.

Сам по себе гидроксид алюминия - это белый студенистый осадок. Получить его легко при взаимодействии соли алюминия с щелочью или При взаимодействии с кислотами данный гидроксид дает обычную соответствующую соль и воду. Если же реакция идет с щелочью, то формируются гидроксокомплексы алюминия, в которых его координационное число равно 4. Пример: Na - тетрагидроксоалюминат натрия.

gastroguru © 2017