Работа по перемещению заряда в электростатическом поле формула. Работа электростатического поля

При перемещении заряда в электростатическом поле, действующие на заряд кулоновские силы, совершают работу. Пусть заряд q 0 0 перемещается в поле заряда q0 из точки С в точку В вдоль произвольной траектории (рис.1.12). На q 0 действует кулоновская сила

При элементарном перемещении заряда dl , эта сила совершает работу dA

Где  - угол между векторами и . Величина dl cos=dr является проекцией вектора на направление силы . Таким образом, dA=Fdr, . Полная работа по перемещению заряда из точки С в В определяется интегралом , где r 1 и r 2 - расстояния заряда q до точек С и В. Из полученной формулы следует, что работа, совершаемая при перемещении электрического заряда q 0 в поле точечного заряда q, не зависит от формы траектории перемещения, а зависит только от начальной и конечной точки перемещения .

В разделе динамики показано, что поле, удовлетворяющее этому условию, является потенциальным. Следовательно, электростатическое поле точечного заряда - потенциальное , а действующие в нем силы - консервативные .

Если заряды q и q 0 одного знака, то работа сил отталкивания будет положительной при их удалении и отрицательной при их сближении (в последнем случае работу совершают внешние силы). Если заряды q и q 0 разноименные, то работа сил притяжения будет положительной при их сближении и отрицательной при удалении друг от друга (последнем случае работу также совершают внешние силы).

Пусть электростатическое поле, в котором перемещается заряд q 0 , создано системой зарядов q 1 , q 2 ,...,q n . Следовательно, на q 0 действуют независимые силы , равнодействующая которых равна их векторной сумме. Работа А равнодействующей силы равна алгебраической сумме работ составляющих сил, , где r i1 и r i2 - начальное и конечное расстояния между зарядами q i и q 0 .

Циркуляция вектора напряженности.

При перемещении заряда по произвольному замкнутому пути L работа сил электростатического поля равна нулю. Поскольку, конечное положение заряда равно начальному r 1 =r 2 , то и (кружок у знака интеграла указывает на то, что интегрирование производится по замкнутому пути). Так как и , то . Отсюда получаем . Сократив обе части равенства на q 0 , получим или , где E l =Ecos - проекция вектора Е на направление элементарного перемещения . Интеграл называется циркуляцией вектора напряженности . Таким образом,циркуляция вектора напряженности электростатического поля вдоль любого замкнутого контура равна нулю . Это заключение есть условие потенциальности поля .

Потенциальная энергия заряда.

В потенциальном поле тела обладают потенциальной энергией и работа консервативных сил совершается за счет убыли потенциальной энергии.

Поэтому работу A 12 можно представить, как разность потенциальных энергий заряда q 0 в начальной и конечной точках поля заряда q :

Потенциальная энергия заряда q 0 , находящегося в поле заряда q на расстоянии r от него равна

Считая, что при удалении заряда на бесконечность, потенциальная энергия обращается в нуль, получаем: const = 0 .

Для одноименных зарядов потенциальная энергия их взаимодействия (отталкивания) положительна , для разноименных зарядов потенциальная энергия из взаимодействия (притяжения ) отрицательна .

Если поле создается системой n точечных зарядов, то потенциальная энергия заряда q 0 , находящегося в этом поле, равна сумме его потенциальных энергий, создаваемых каждым из зарядов в отдельности:

Потенциал электростатического поля.

Отношение не зависит от пробного заряда q0 и является, энергетической характеристикой поля, называемой потенциалом :

Потенциал ϕ в какой-либо точке электростатического поля есть скалярная физическая величина , определяемая потенциальной энергией единичного положительного заряда, помещенного в эту точку.

Потенциал электростатического поля - скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду:

Энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Т.к. потенциальная энергия зависит от выбора системы координат, то и потенциал определяется с точностью до постоянной.

За точку отсчета потенциала выбирают в зависимости от задачи: а) потенциал Земли, б) потенциал бесконечно удаленной точки поля, в) потенциал отрицательной пластины конденсатора.

Следствие принци­па суперпозиции полей (потенциалы складываютсяалгебраически ).

Потенциал численно равен работе поля по перемещению единичного положительного заряда из данной точки электрического поля в бесконечность.

В СИ потенциал измеряется в вольтах:

Разность потенциалов

Напряжение - разность значений потенциала в начальной и конечнойточках траектории.

Напряжение численно равно работе электростатического поля при перемещении единичного положительного заряда вдоль силовых линий этого поля.

Разность потенциалов (напряжение) не зависит от выбора

системы координат!

Единица разности потенциалов

Напряжение равно 1 В, если при перемещении положительного заряда в 1 Кл вдоль силовых линий поле совершает работу в 1 Дж.

Связь между напряженностью и напряжением .

Из доказанного выше:

напряженность равна градиенту потенциала (скорости изменения потенциала вдоль направления d).

Из этого соотношения видно:

Эквипотенциальные поверхности.

ЭПП - поверхности равного потенциала.

Свойства ЭПП:

Работа при перемещении заряда вдоль эквипотенциальной поверхности не совершается;

Вектор напряженности перпендикулярен к ЭПП в каждой ее точке.

Измерение электрического напряжения (разности потенциалов)

Между стержнем и корпусом - электрическое поле. Измерение потенциала кондуктора Измерение напряжения на гальваническом элементе Электрометр дает большую точность, чем вольтметр.

Одним из основных понятий в электричестве является электростатическое поле. Его важным свойством считается работа по перемещению заряда в электрическом поле, которое создается распределенным зарядом, не изменяющимся во времени.

Условия выполнения работы

Сила, находящиеся в электростатическом поле, перемещает заряд из одного места в другое. На нее совершенно не влияет форма траектории. Определение силы зависит только от положения точек в начале и конце, а также, от общей величины заряда.

Исходя из этого, можно сделать следующий вывод: Если траектория при перемещении электрозаряда является замкнутой, то вся работа сил в электростатическом поле имеет нулевое значение. При этом, форма траектории не имеет значения, поскольку кулоновские силы производят одинаковую работу. Когда направление, в котором перемещается электрозаряд, изменяется на противоположное, то сама сила также изменяет свой знак. Поэтому, замкнутая траектория, независимо от своей формы, определяет всю работу, производимую кулоновскими силами, равной нулю.

Если в создании электростатического поля принимает участие сразу несколько точечных зарядов, то их общая работа будет складываться из суммы работ, производимых кулоновскими полями этих зарядов. Общая работа, независимо от формы траектории, определяется исключительно местом расположения начальных и конечных точек.

Понятие потенциальной энергии заряда

Свойственная электростатическому полю, позволяет определять потенциальную энергию какого-либо заряда. Кроме того, с ее помощью более точно устанавливается работа по перемещению заряда в электрическом поле. Чтобы получить это значение, в пространстве необходимо выбрать определенную точку и потенциальную энергию заряда, размещаемого в данной точке.

Заряд, помещаемый в любую точку, имеет потенциальную энергию, равной работе, совершаемой электростатическим полем, во время перемещения заряда из одной точки в другую.

В физическом смысле, потенциальная энергия представляет собой значение для каждой из двух разных точек пространства. При этом, работа по перемещению заряда находится вне зависимости от путей его перемещения и выбранной точки. Потенциал электростатического поля в данной пространственной точке, равняется работе, совершаемой электрическими силами, когда единичный положительный заряд удаляется из этой точки в бесконечное пространство.

Работа электрического поля

F - сила взаимодействия двух точечных зарядов

q 1 , q 2 - величины зарядов

ε α - абсолютная диэлектрическая проницаемость среды

r - расстояние между точечными зарядами

Консервативность электростатического взаимодействия.

Вычислим работу, которую совершает электростатическое поле, созданное зарядом по перемещению заряда q из точки 1 в точку 2.

Работа на пути dl равна:

где dr – приращение радиус-вектора при перемещении на dl; т. е.

Тогда полная работа при перемещении из точки 1 в точку 2 равна интегралу:

Работа электростатических сил не зависит от формы пути, а только лишь от координат начальной и конечной точек перемещения . Следовательно, силы поля консервативны , а само поле – потенциально .

Потенциал электростатического поля.

Потенциал электростатического поля - скалярная величина, равная отношению потен­циальной энергии заряда в поле к этому заряду:

Энергетическая характеристика поля в данной точке. Потенциал не зависит от величины заряда, помещенного в это поле.

Потенциал электростатического поля точечного заряда.

Рассмотрим частный случай, когда электростатическое поле создается электрическим зарядом Q. Для исследования потенциала такого поля нет необходимости в него вносить заряд q. Можно высчитать потенциал любой точки такого поля, находящейся на расстоянии r от заряда Q.


Диэлектрическая проницаемость среды имеет известное значение (табличное), характеризует среду, в которой существует поле. Для воздуха она равна единице.

Формула работы электростатического поля.

На заряд q₀ со стороны поля действует сила, которая может совершать работу и перемещать этот заряд в поле.

Работа электростатического поля не зависит от траектории. Работа поля при перемещении заряда по замкнутой траектории равна нулю. По этой причине силы электростатического поля называются консервативными, а само поле называется потенциальным.

Связь напряженности электростатического поля с потенциалом.

Напряжённость в какой-либо точке электрического поля равна градиенту потенциала в этой точке, взятому с обратным знаком. Знак «минус» указывает, что напряженность E направлена в сторону убывания потенциала.

Электроемкость проводника и конденсатора.

Электрическая ёмкость - характеристика проводника, мера его способности накапливать электрический заряд

Формула электроемкости плоского конденсатора.

Энергия электрического поля.

Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.

Электрический ток.

Электри́ческий ток - направленное (упорядоченное) движение заряженных частиц

Условия возникновения и существования электрического тока.

1. наличие свободных носителей зарядов,

2. наличие разности потенциалов. это условия возникновения тока,

3. замкнутая цепь,

4. источник сторонних сил, который поддерживает разность потенциалов.

Сторонние силы.

Сторонние силы - силы неэлектрической природы, вызывающие перемещение электрических зарядов внутри источника постоянного тока. Сторонними считаются все силы отличные от кулоновских сил.

Э.д.с. Напряжение.

Электродвижущая сила (ЭДС) - физическая величина, характеризующая работу сторонних (непотенциальных) сил в источниках постоянного или переменного тока. В замкнутом проводящем контуре ЭДС равна работе этих сил по перемещению единичного положительного заряда вдоль контура.

ЭДС можно выразить через напряжённость электрического поля сторонних сил

Напряжение (U) равно отношению работы электрического поля по перемещению заряда
к величине перемещаемого заряда на участке цепи.

Единица измерения напряжения в системе СИ:

Сила тока.

Сила тока (I)- скалярная величина, равная отношению заряда q , прошедшего через поперечное сечение проводника, к промежутку времени t , в течение которого шел ток. Сила тока показывает, какой заряд проходит через поперечное сечение проводника за единицу времени.

Плотность тока.

Плотность тока j - вектор, модуль которого равен отношению силы тока, протекающего через некоторую площадку, перпендикулярно направлению тока, к величине этой площадки.

В СИ единицей плотности тока является ампер на квадратный метр (А/м2).

Если в электростатическом поле точечного заряда q из точки 1 в точку 2 вдоль произвольной траектории перемещается другой точечный заряд q 0 , то сила, приложенная к заряду, совершает работу. Работа силы на элементарном перемещении dl равна

Работа при перемещении заряда q 0 из точки 1 в точку 2

Работа A 12 не зависит от траектории перемещения, а определяется только положениями начальной и конечной точек . Следовательно, электростатическое поле точечного заряда является потенциальным , а электростатические силы - консервативными .

Таким образом, работа перемещения заряда в электростатическом поле по любому замкнутому контуру L равна нулю

Интеграл называется циркуляцией вектора напряженности. Из обращения ее в нуль следует, что линии напряженности электростатического поля никогда не могут быть замкнуты сами на себя. Они начинаются и кончаются на зарядах, либо уходят в бесконечность. Это свидетельствует о наличии в природе двух родов электрических зарядов. Формула справедлива только для электростатического поля.

При перемещении зарядов изменяется их взаимное расположение, поэтому работа, совершаемая электрическими силами, в этом случае равна изменению потенциальной энергии перемещаемого заряда:

Потенциальная энергия заряда q 0 , находящегося в поле заряда q на расстоянии r от него равна

Считая, что при удалении заряда на бесконечность, потенциальная энергия обращается в нуль, получаем: const = 0.

Для одноименных зарядов потенциальная энергия их взаимодействия (отталкивания) положительна , для разноименных зарядов потенциальная энергия из взаимодействия (притяжения) отрицательна .

В любой точке поля потенциальная энергия W заряда численно равна работе, которую необходимо совершить для перемещения заряда из бесконечности в эту точку.

Отношение зависит только от q и r . Эту величину называют потенциалом:

Единица электрического потенциала – вольт (В).

Она характеризует потенциальную энергию, которой обладал бы по­ложительный единичный заряд, помещенный в данную точку поля.Для поля точечного заряда: . Потенциал данной точки поля равен работе перемещения единичного положительного заряда из данной точки в бесконечность.



Потенциал поля, создаваемого системой точечных зарядов, равен алгебраической сумме потенциалов всех этих зарядов : .

Работа сил поля при перемещении заряда q’ из точки 1 в точку 2 может быть записана в виде:

Величину называют разностью потенциалов (напряжением) электрического поля.

Элементарная работа, совершаемая силой F при перемещении точечного электрического заряда из одной точки электростатического поля в другую на отрезке пути , по определению равна

где - угол между вектором силы F и направлением движения . Если работа совершается внешними силами, то dA0. Интегрируя последнее выражение, получим, что работа против сил поля при перемещении пробного заряда из точки “а” в точку “b” будет равна

где - кулоновская сила, действующая на пробный заряд в каждой точке поля с напряженностью Е. Тогда работа

Пусть заряд перемещается в поле заряда q из точки “а”, удалённой от q на расстоянии в точку “b”, удаленную от q на расстоянии (рис 1.12).

Как видно из рисунка тогда получим

Как было сказано выше, работа сил электростатического поля, совершаемая против внешних сил, равна по величине и противоположна по знаку работе внешних сил, следовательно

Потенциальная энергия заряда в электрическом поле. Работу, совершаемую силами электрического поля при перемещении положительного точечного заряда q из положения 1 в положение 2, представим как изменение потенциальной энергии этого заряда: ,

где W п1 и W п2 – потенциальные энергии заряда q в положениях 1 и 2. При малом перемещении заряда q в поле, создаваемом положительным точечным зарядом Q , изменение потенциальной энергии равно

.

При конечном перемещении заряда q из положения 1 в положение 2, находящиеся на расстояниях r 1 и r 2 от заряда Q ,

Если поле создано системой точечных зарядов Q 1 , Q 2 ,¼, Q n , то изменение потенциальной энергии заряда q в этом поле:

.

Приведённые формулы позволяют найти только изменение потенциальной энергии точечного заряда q , а не саму потенциальную энергию. Для определения потенциальной энергии необходимо условиться, в какой точке поля считать ее равной нулю. Для потенциальной энергии точечного заряда q , находящегося в электрическом поле, созданном другим точечным зарядом Q , получим

,

где C – произвольная постоянная. Пусть потенциальная энергия равна нулю на бесконечно большом расстоянии от заряда Q (при r ® ¥), тогда постоянная C = 0 и предыдущее выражение принимает вид

При этом потенциальная энергия определяется как работа перемещения заряда силами поля из данной точки в бесконечно удаленную .В случае электрического поля, создаваемого системой точечных зарядов, потенциальная энергия заряда q :

.

Потенциальная энергия системы точечных зарядов. В случае электростатического поля потенциальная энергия служит мерой взаимодействия зарядов. Пусть в пространстве существует система точечных зарядов Q i (i = 1, 2, ... ,n ). Энергиявзаимодействия всех n зарядов определится соотношением

,

где r ij - расстояние между соответствующими зарядами, а суммирование производится таким образом, чтобы взаимодействие между каждой парой зарядов учитывалось один раз.

Потенциал электростатического поля. Поле консервативной силы может быть описано не только векторной функцией, но эквивалентное описание этого поля можно получить, определив в каждой его точке подходящую скалярную величину. Для электростатического поля такой величиной является потенциал электростатического поля , определяемый как отношение потенциальной энергии пробного заряда q к величине этого заряда, j = W п / q , откуда следует, что потенциал численно равен потенциальной энергии, которой обладает в данной точке поля единичный положительный заряд. Единицей измерения потенциала служит Вольт (1 В).

Потенциал поля точечного заряда Q в однородной изотропной среде с диэлектрической проницаемостью e:

Принцип суперпозиции. Потенциал есть скалярная функция, для неё справедлив принцип суперпозиции. Так для потенциала поля системы точечных зарядов Q 1, Q 2 ¼, Q n имеем

,

где r i - расстояние от точки поля, обладающей потенциалом j, до заряда Q i . Если заряд произвольным образом распределен в пространстве, то

,

где r - расстояние от элементарного объема dx , dy , dz до точки (x , y , z ), где определяется потенциал; V - объем пространства, в котором распределен заряд.

Потенциал и работа сил электрического поля. Основываясь на определении потенциала, можно показать, что работа сил электрического поля при перемещении точечного заряда q из одной точки поля в другую равна произведению величины этого заряда на разность потенциалов в начальной и конечной точках пути, A = q (j 1 - j 2).
Если по аналогии с потенциальной энергией считать, что в точках, бесконечно удалённых от электрических зарядов - источников поля, потенциал равен нулю, то работу сил электрического поля при перемещении заряда q из точки 1 в бесконечность можно представить как A ¥ = q j 1 .
Таким образом, потенциал â данной точке электростатического поля - этофизическая величина, численно равная работе, совершаемой силами электрического поля при перемещении единичного положительного точечного заряда из данной точки поля в бесконечно удаленную : j = A ¥ / q .
В некоторых случаях потенциал электрического поля нагляднее определяется какфизическая величина, численно равная работе внешних сил против сил электрического поля при перемещении единичного положительного точечного заряда из бесконечности в данную точку . Последнее определение удобно записать следующим образом:

В современной науке и технике, особенно при описании явлений, происходящих в микромире, часто используется единица работы и энергии, называемая электрон-вольтом (эВ). Это работа, совершаемая при перемещении заряда, равного заряду электрона, между двумя точками с разностью потенциалов 1 В: 1 эВ = 1,60×10 -19 Кл×1 В = 1,60×10 -19 Дж.

Метод точечных зарядов.

Примеры применения метода для расчета напряженности и потенциала электростатического поля.

Будем искать, каким образом связаны напряженность электростатического поля, которая является его силовой характеристикой , и потенциал, который есть его энергетическая характеристика поля .

Работа по перемещению единичного точечного положительного электрического заряда из одной точки поля в другую вдоль оси х при условии, что точки расположены достаточно близко друг к другу и x 2 -x 1 =dx, равна E x dx. Та же работа равна φ 1 -φ 2 =dφ. Приравняв обе формулы, запишем
(1)

где символ частной производной подчеркивает, что дифференцирование осуществляется только по х. Повторив эти рассуждения для осей у и z, найдем вектор Е :

где i , j , k - единичные векторы координатных осей х, у, z.
Из определения градиента следует, что
или (2)

т. е. напряженность Е поля равна градиенту потенциала со знаком минус. Знак минус говорит о том, что вектор напряженности Е поля направлен в сторону уменьшения потенциала .
Для графического представления распределения потенциала электростатического поля, как и в случае поля тяготения, пользуютсяэквипотенциальными поверхностями - поверхностями, во всех точках которых потенциал φ имеет одинаковое значение.
Если поле создается точечным зарядом, то его потенциал, согласно формуле потенциала поля точечного заряда, φ=(1/4πε 0)Q/r .Таким образом, эквипотенциальные поверхности в данном случае - концентрические сферы с цетром в точечном заряде. Заметим также, линии напряженности в случае точечного заряда - радиальные прямые. Значит, линии напряженности в случае точечного зарядаперпендикулярны эквипотенциальным поверхностям.
Линии напряженности всегда перпендикулярны к эквипотенциальным поверхностям. В самом деле, все точки эквипотенциальной поверхности обладают одинаковым потенциалом, поэтому работа по перемещению заряда вдоль этой поверхности равна нулю, т. е. электростатические силы, которые действуют на заряд, всегда направлены по перпендикурярам к эквипотенциальным поверхностям. Значит, вектор Е всегда перпендикулярен к эквипотенциальным поверхностям , а поэтому линии вектора Е перпендикулярны этим поверхностям.
Эквипотенциальных поверхностей вокруг каждого заряда и каждой системы зарядов можно провести бесконечное множество. Но обычно их проводят так, чтобы разности потенциалов между любыми двумя соседними эквипотенциальными поверхностями были равны друг другу. Тогда густота эквипотенциальных поверхностей наглядно характеризует напряженность поля в разных точках. Там, где гуще расположены эти поверхности, напряженность поля больше.
Значит, зная расположение линий напряженности электростатического поля, можно нарисовать эквипотенциальные поверхности и, наоборот, по известному нам расположению эквипотенциальных поверхностей можно найти в каждой точке поля направление и модуль напряженности поля. На рис. 1 в качестве примера показан вид линий напряженности (штриховые линии) и эквипотенциальных поверхностей (сплошные линии) полей положительного точечного электрического заряда (а) и заряженного металлического цилиндра, который имеет на одном конце выступ, а на другом - впадину (б).

Теорема Гаусса.

Поток вектора напряженности. Теорема Гаусса. Применение теоремы Гаусса для расчета электростатических полей.

Поток вектора напряженности.
Число линий вектора E, пронизывающих некоторую поверхность S, называется потоком вектора напряженности N E .

Для вычисления потока вектора E необходимо разбить площадь S на элементарные площадки dS, в пределах которых поле будет однородным (рис.13.4).

Поток напряженности через такую элементарную площадку будет равен по определению(рис.13.5).

где - угол между силовой линией и нормалью к площадке dS; - проекция площадки dS на плоскость, перпендикулярную силовым линиям. Тогда поток напряженности поля через всю поверхность площадки S будет равен

Разобъем весь объем, заключенный внутри поверхности S на элементарные кубики типа изображенных на рис. 2.7. Грани всех кубиков можно разделить на внешние, совпадающие с поверхностью S и внутренние, граничащие только со смежными кубиками. Сделаем кубики настолько маленькими, чтобы внешние грани точно воспроизводили форму поверхности. Поток вектора a через поверхность каждого элементарного кубика равен

,

а суммарный поток через все кубики, заполняющие объем V, есть

(2.16)

Рассмотрим входящую в последнее выражение сумму потоков d Ф через каждый из элементарных кубиков. Очевидно, что в эту сумму поток вектора a через каждую из внутренних граней войдет дважды.

Тогда полный поток через поверхность S=S 1 +S 2 будет равен сумме потоков через только внешние грани, поскольку сумма потоков через внутреннюю грань даст ноль. По аналогии можно заключить, что все относящиеся к внутренним граням члены суммы в левой части выражения (2.16), сократятся. Тогда, переходя в силу элементарности размеров кубиков от суммирования к интегрированию, получим выражение (2.15), где интегрирование производится по поверхности, ограничивающей объем.

Заменим в соответствии с теоремой Остроградского-Гаусса поверхностный интеграл в (2.12) объемным

и представим суммарный заряд как интеграл от объемной плотности по объему

Тогда получим следующее выражение

Полученное соотношение должно выполняться для любого произвольно выбранного объема V . Это возможно только в том случае, если значения подинтегральных функций в каждой точке объема одинаковы. Тогда можно записать

(2.17)

Последнее выражение представляет собой теорему Гаусса в дифференциальной форме.

1. Поле равномерно заряженной бесконечной плоскости . Бесконечная плоскость заряжена с постоянной поверхностной плотностью +σ (σ = dQ/dS - заряд, который приходится на единицу поверхности). Линии напряженности перпендикулярны данной плоскости и направлены от нее в каждую из сторон. Возьмем в качестве замкнутой поверхности цилиндр, основания которого параллельны заряженной плоскости, а ось перпендикулярна ей. Так как образующие цилиндра параллельны линиям напряженности поля (соsα=0), то поток вектора напряженности сквозь боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания (площади оснований равны и для основания Е n совпадает с Е), т. е. равен 2ES. Заряд, который заключен внутри построенной цилиндрической поверхности, равен σS. Согласно теореме Гаусса, 2ES=σS/ε 0 , откуда

Из формулы (1) следует, что Е не зависит от длины цилиндра, т. е. напряженность поля на любых расстояниях равна по модулю, иными словами, поле равномерно заряженной плоскости однородно .

2. Поле двух бесконечных параллельных разноименно заряженных плоскостей (рис. 2). Пусть плоскости заряжены равномерно разными по знаку зарядами с поверхностными плотностями +σ и –σ. Поле таких плоскостей будем искать как суперпозицию полей, которые создаваются каждой из плоскостей в отдельности. На рисунке верхние стрелки соответствуют полю от положительно заряженной плоскости, нижние - от отрицательно заряженной плоскости. Слева и справа от плоскостей поля вычитаются (поскольку линии напряженности направлены навстречу друг другу), значит здесь напряженность поля E=0. В области между плоскостями E = E + + E - (E + и E - находятся по формуле (1)), поэтому результирующая напряженность

Значит, результирующая напряженность поля в области между плоскостями описывается зависимостью (2), а вне объема, который ограничен плоскостями, равна нулю.

3. Поле равномерно заряженной сферической поверхности . Сферическая поверхность радиуса R с общим зарядом Q заряжена равномерно с поверхностной плотностью +σ. Т.к. заряд распределен равномернопо поверхности то поле, которое создавается им, обладает сферической симметрией. Значит линии напряженности направлены радиально (рис. 3). Проведем мысленно сферу радиуса r, которая имеет общий центр с заряженной сферой. Если r>R,ro внутрь поверхности попадает весь заряд Q, который создает рассматриваемое поле, и, по теореме Гаусса, 4πr 2 E = Q/ε 0 , откуда

(3)

При r>R поле убывает с расстоянием r по такому же закону, как у точечного заряда. График зависимости Е от r приведен на рис. 4. Если r" 4. Поле объемно заряженного шара . Шар радиуса R с общим зарядом Q заряжен равномерно с объемной плотностью ρ (ρ = dQ/dV – заряд, который приходится на единицу объема). Учитывая соображения симметрии, аналогичные п.3, можно доказать, что для напряженности поля вне шара получится тот же результат, что и в случае (3). Внутри же шара напряженность поля будет иная. Сфера радиуса r"

Значит, напряженность поля вне равномерно заряженного шара описывается формулой (3), а внутри его изменяется линейно с расстоянием r" согласно зависимости (4). График зависимости Е от r для рассмотренного случая показан на рис. 5.
5. Поле равномерно заряженного бесконечного цилиндра (нити) . Бесконечный цилиндр радиуса R (рис. 6) равномерно заряжен слинейной плотностью τ (τ = –dQ/dt заряд, который приходится на единицу длины). Из соображений симметрии мы видим, что линии напряженности будут направлены по радиусам круговых сечений цилиндра с одинаковой густотой во все стороны относительно оси цилиндра. Мысленно построим в качестве замкнутой поверхности коаксиальный цилиндр радиуса r и высотой l . Поток вектора Е сквозь торцы коаксиального цилиндра равен нулю (торцы и линии напряженности параллельны), а сквозь боковую поверхность равен 2πrl Е. Используя теорему Гаусса, при r>R 2πrl Е = τl /ε 0 , откуда

Если r

Электрический диполь.

Характеристики электрического диполя. Поле диполя. Диполь в электрическом поле.

Совокупность двух равных по величине разноименных точечных зарядов q, расположенных на некотором расстоянии друг от друга, малом по сравнению с расстоянием до рассматриваемой точки поля называется электрическим диполем.(рис.13.1)

Произведение называется моментом диполя. Прямая линия, соединяющая заряды называется осью диполя. Обычно момент диполя считается направленным по оси диполя в сторону положительного заряда.

gastroguru © 2017