Классификация белков простые сложные. Белки

По химическому составу – простые и сложные

Простые белки (протеины) – молекулы состоят только из аминокислот.

Подразделяются по растворимости в воде на группы :

  • протамины
  • гистоны
  • альбумины
  • глобулины
  • проламины
  • глютелины

Сложные белки (протеиды)

Виды сложных белков:

  • липопротеиды
  • гликопротеиды
  • фосфопротеиды
  • металлопротеиды
  • нуклеопротеиды
  • хромопротеиды

15. Сложные белки: определение, классификация по небелковому компоненту. Краткая характеристика представителей .

Сложные белки (протеиды) – помимо полипептидной цепи имеются небелковые компоненты, представленные углеводами (гликопротеиды), липидами (липопротеиды), нуклеиновыми кислоты (нуклеопротеиды), ионами металла (металлопротеиды), фосфатной группой (фосфопротеиды), пигментами (хромопротеиды) и т. д.

Виды сложных белков:

  • липопротеиды
  • гликопротеиды
  • фосфопротеиды
  • металлопротеиды
  • нуклеопротеиды
  • хромопротеиды
Вид сложных белков Примеры
Липопротеиды Хиломикроны, ЛПОНП (липопротеиды очень низкой плотности), ЛППП (липопротеиды промежуточной плотности), ЛПНП (липопротеиды низкой плотности), ЛПВП (липопротеиды высокой плотности) и др.
Гликопротеиды Муцины, мукоиды, церулоплазмин, орозомукоид, трансферины, протромбин, иммуноглобулины и др.
Фосфопротеиды Казеин, овальбумин, вителлин и др.
Металлопротеиды Гемэритрин, гемоцианин, ферритин, трансферрин
Нуклеопротеиды Дезоксирибонуклепротеиды (ДНП), рибонуклеопротеиды (РНП)
Хромопротеиды Цитохромы, каталаза, пероксидаза, гемоглобин, миоглобин, эритрокруорины, хлорокруорины

16.Биологические функции белков. Способность к специфическим взаимодействиям («узнавание») как основа биологических функ­­ций всех белков. Типы природных лигандов и особенности их взаимодействия с белками.

Каждый индивидуальный белок, имеющий уникальную первичную структуру и конформацию, обладает и уникальной функцией, отличающей его от остальных белков. Набор индивидуальных белков выполняет в клетке множество разнообразных и сложных функций. Необходимое условие для функционирования белков - присоединение к нему другого вещества, которое называют "лиганд ". Лигандами могут быть как низкомолекулярные вещества, так и макромолекулы. Взаимодействие белка с лигандом высокоспецифично и обратимо, что определяется строением участка белка, называемого центром связывания белка с лигандом или активным центром.

Активный центр белков - определённый участок белковой молекулы, как правило, находящийся в её углублении ("кармане"), сформированный радикалами аминокислот, собранных на определённом пространственном участке при формировании третичной структуры и способный комплементарно связываться с лигандом. В линейной последовательности полипептидной цепи радикалы, формирующие активный центр, могут находиться на значительном расстоянии друг от друга.Уникальные свойства активного центра зависят не только от химических свойств формирующих его аминокислот, но и от их точной взаимной ориентации в пространстве. Поэтому даже незначительные нарушения общей конформации белка в результате точечных изменений его первичной структуры или условий окружающей среды могут привести к изменению химических и функциональных свойств радикалов, формирующих активный центр, нарушать связывание белка с лигандом и его функцию. При денатурации активный центр белков разрушается, и происходит утрата их биологической активности.

Под комплементарностью понимают пространственное и химическое соответствие взаимодействующих молекул. Лиганд должен обладать способностью входить и пространственно совпадать с конформацией активного центра. Это совпадение может быть неполным, но благодаря конформационной лабильности белка активный центр способен к небольшим изменениям и "подгоняется" под лиганд. Кроме того, между функциональными группами лиганда и радикалами аминокислот, образующих активный центр, должны возникать связи, удерживающие лиганд в активном центре. Связи между лигандом и активным центром белка могут быть как нековалентными (ионными, водородными, гидрофобными), так и ковалентными.

Биологические функции белков:

17. Различие белкового состава органов и тканей. Изменение белкового состава при онтогенезе и болезнях.(ферменты это белковые молекулы кроч одно и тоже)

.Различия ферментного состава органов и тканей. Органоспецифические ферменты. Изменение ферментов в процессе развития.

Сравнение множества клеток самых разных типов показывает, что набор содержащихся в них ферментов во многом сходен. По-видимому, во всех живых организмах протекают в основном одни и те же метаболические процессы; некоторые различия, касающиеся конечных продуктов обмена, отражают скорее наличие или отсутствие того или иного фермента, нежели изменение общего характера метаболизма. Сложные системы углеводного обмена, состоящие из ферментов, коферментов и переносчиков, образуют главный поставляющий энергию механизм у животных, растений, плесневых грибов, дрожжей и у большинства других микроорганизмов. Однако в характере метаболизма, химическом составе и строении различных тканей и различных организмов имеются и бесспорные различия. Что касается метаболизма, то особенности его в соответствующих органах или тканях, несомненно, определяются набором ферментов. Различия в химическом составе органов и тканей тоже зависят от их ферментного состава, в первую очередь от тех ферментов, которые участвуют в процессах биосинтеза. Не исключено, что и более очевидные различия, касающиеся строения и формы тех или иных органов и тканей, также имеют энзимологическую природу: Известно, что строение и форма находятся под контролем генов; контроль осуществляется путем образования специфических белков, из которых главными для организации тканей являются ферменты я транспортные системы. Продуктами генов могут быть также белки, не обладающие каталитическими свойствами, но играющие важную роль в «встраивании» ферментных белков в соответствующие структурные ансамбли, например мембраны; однако такие молекулы можно рассматривать как компоненты катализаторов, поскольку они находятся в теснейшей взаимосвязи с ними.

Изменение активности ферментов при болезнях. Наследственные энзимопатии. Происхождение ферментов крови и значение их определения при болезнях.

В основе многих заболеваний лежат нарушения функционирования ферментов в клетке - энзимопатии . Различают первичные (наследственные) и вторичные (приобретённые) энзимопатии. Приобретённые энзимопатии, как и вообще протеинопатии, по-видимому, наблюдают при всех болезнях.

При первичных энзимопатиях дефектные ферменты наследуются, в основном, по аутосомнорецессивному типу. Гетерозиготы, чаще всего, не имеют фенотипических отклонений. Первичные энзимопатии обычно относят к метаболическим болезням, так как происходит нарушение определённых метаболических путей. При этом развитие заболевания может протекать

по одному из ниже перечисленных "сценариев". Рассмотрим условную схему метаболического пути:

Вещество А в результате последовательных ферментативных реакций превращается в продукт Р. При наследственной недостаточности какого-либо фермента, например фермента Е3, возможны разные нарушения метаболических путей:

Нарушение образования конечных продуктов . Недостаток конечного продукта этого метаболического пути (Р) (при отсутствии альтернативных путей синтеза) может приводить к развитию клинических симптомов, характерных для данного заболевания:

· Клинические проявления. В качестве примера можно рассмотреть альбинизм. При альбинизме нарушен синтез в меланоцитах пигментов - меланинов. Меланин находится в коже, волосах, радужке, пигментном эпителии сетчатки глаза и влияет на их окраску. При альбинизме наблюдают слабую пигментацию кожи, светлые волосы, красноватый цвет радужки глаза из-за просвечивающих капилляров. Проявление альбинизма связано с недостаточностью фермента тирозингидроксилазы (тирозиназы) - одного из ферментов, катализирующего метаболический путь образования меланинов

Накопление субстратов-предшественников . При недостаточности фермента Е3 будут накапливаться вещество С, а также во многих случаях и предшествующие соединения. Увеличение субстратов-предшественников дефектного фермента - ведущее звено развития многих заболеваний:

· Клинические проявления. Известно заболевание алкапгонурия, при котором нарушено окисление гомогентизиновой кислоты в тканях (гомогентизиновая кислота - промежуточный метаболит катаболизма тирозина). У таких больных наблюдают недостаточность фермента окисления гомогентизиновой кислоты - диоксигеназы гомогентизиновой кислоты, приводящей к развитию заболевания. В результате увеличиваются концентрация гомогентизиновой кислоты и выведение её с мочой. В присутствии кислорода гомогентизиновая кислота превращается в соединение чёрного цвета - алкаптон. Поэтому моча таких больных на воздухе окрашивается в чёрный цвет. Алкаптон также образуется и в биологических жидкостях, оседая в тканях, коже, сухожилиях, суставах. При значительных отложениях алкаптона в суставах нарушается их подвижность.

Нарушение образования конечных продуктов и накопление субстратов предшественников . Отмечают заболевания, когда одновременно недостаток продукта и накопление исходного субстрата вызывают клинические проявления.

· Клинические проявления. Например, у людей с болезнью Гирке (гликогеноз I типа) наблюдают снижение концентрации глюкозы в крови (гипогликемия) в перерывах между приёмами пищи. Это связано с нарушением распада гликогена в печени и выходом из неё глюкозы вследствие дефекта фермента глюкозо-6-фосфатфосфатазы. Одновременно у таких людей увеличиваются размеры печени (гепатомегалия) вследствие накопления в ней не используемого гликогена.

Особый интерес для клиники представляет исследование активности индикаторных ферментов в сыворотке крови, так как по появлению в плазме или сыворотке крови ряда тканевых ферментов в повышенных количествах можно судить о функциональном состоянии и поражении различных органов (например, печени, сердечной и скелетной мускулатуры). При остром инфаркте миокарда особенно важно исследовать активность креатинкиназы, АсАТ, ЛДГ и оксибутиратдегидрогеназы. При заболеваниях печени, в частности при вирусном гепатите (болезнь Боткина), в сыворотке крови значительно увеличиваетсяактивность АлАТ и АсАТ, сорбитолдегидрогеназы, глутаматдегидрогеназы и некоторых других ферментов. озрастание активности ферментов сыворотки крови при многих патологических процессах объясняется прежде всего двумя причинами: 1) выходом в кровяное русло ферментов из поврежденных участков органов или тканей на фоне продолжающегося ихбиосинтеза в поврежденных тканях; 2) одновременным повышением каталитической активности некоторых ферментов, переходящих вкровь. Возможно, что повышение активности ферментов при «поломке» механизмов внутриклеточной регуляции обмена веществсвязано с прекращением действия соответствующих регуляторов и ингибиторов ферментов, изменением под влиянием различных факторов строения и структуры макромолекул ферментов.

18. Ферменты, история открытия. Особенности ферментативного катализа. Специфичность действия ферментов. Классификация и номенклатура ферментов.

Термин фермент предложен в XVII веке химиком ван Гельмонтом при обсуждении механизмов пищеварения.

В кон. ХVIII - нач. XIX вв. уже было известно, что мясо переваривается желудочным соком, а крахмал превращается в сахар под действием слюны. Однако механизм этих явлений был неизвестен В XIX в. Луи Пастер, изучая превращение углеводов в этиловый спирт под действием дрожжей, пришел к выводу, что этот процесс (брожение) катализируется некой жизненной силой, находящейся в дрожжевых клетках. Более ста лет назад термины фермент и энзим отражали различные точки зрения в теоретическом споре Л. Пастера с одной стороны, и М. Бертло и Ю. Либиха - с другой, о природе спиртового брожения. Собственно ферментами (от лат. fermentum - закваска) называли «организованные ферменты» (то есть сами живые микроорганизмы), а термин энзим (от греч. ἐν- - в- и ζύμη - дрожжи, закваска) предложен в 1876 году В. Кюне для «неорганизованных ферментов», секретируемых клетками, например, в желудок (пепсин) или кишечник (трипсин, амилаза). Через два года после смерти Л. Пастера в 1897 году Э. Бухнер опубликовал работу «Спиртовое брожение без дрожжевых клеток», в которой экспериментально показал, что бесклеточный дрожжевой сок осуществляет спиртовое брожение так же, как и неразрушенные дрожжевые клетки. В 1907 году за эту работу он был удостоен Нобелевской премии. Впервые высокоочищенный кристаллический фермент (уреаза) был выделен в 1926 году Дж. Самнером. В течение последующих 10 лет было выделено еще несколько ферментов, и белковая природа ферментов была окончательно доказана.

Каталитическая активность РНК впервые была обнаружена в 1980-е годы у пре-рРНК Томасом Чеком, изучавшим сплайсинг РНК у инфузории Tetrahymena thermophila.Рибозимом оказался участок молекулы пре-рРНК Tetrahymena, кодируемый интроном внехромосомного гена рДНК; этот участок осуществлял аутосплайсинг, то есть сам вырезал себя при созревании рРНК.

Важнейшие особенности ферментативного катализа - эффективность, специфичность и чувствительность к регуляторным воздействиям. Ферменты увеличивают скорость превращения субстрата по сравнению с неферментативной реакцией в 10 9 -10 12 раз. Столь высокая эффективность обусловлена особенностями строения активного центра. Принято считать, что активный центр комплементарен переходному состоянию субстрата при превращении его в продукт. Благодаря этому стабилизируется переходное состояние и понижается активационный барьер. Большинство ферментов обладает высокой субстратной специфичностью, т. е. способностью катализировать превращение только одного или несколько близких по структуре веществ. Специфичность определяется топографией связывающего субстрат участка активного центра.

Активность ферментов регулируется в процессе их биосинтеза (в т.ч. благодаря образованию изоферментов, которы катализируют идентичные реакции, но отличаются строением и каталитическими свойствами), а также условиями среды (рН, температура, ионная сила раствора) и многочисленными ингибиторами и активаторами, присутствующими в организме. Ингибиторами и активаторами могут служить сами субстраты (в определенных концентрациях), продукты реакции, а также конечные продукты в цепи последовательных превращений вещества Ферментативные реакции чувствительны к внешним условиям, в частности к ионной силе раствора и рН среды. Влияние температуры на скорость ферментативной реакции описывается кривой с максимумом, восходящая ветвь которой отражает обычную для химической реакций зависимость, выраженную уравнением Аррениуса. Нисходящая ветвь связана с тепловой денатурацией фермента.

Биологическая функция фермента, как и любого белка, обусловлена наличием в его структуре активного центра. Лиганд, взаимодействующий с активным центром фермента, называют субстратом. В активном центре фермента есть аминокислотные остатки, функциональные группы которых обеспечивают связывание субстрата, и аминокислотные остатки, функциональные группы которых осуществляют химическое превращение субстрата. Условно эти группы обозначают как участок связывания субстрата и каталитический участок, однако следует помнить, что не всегда эти участки имеют чёткое пространственное разделение и иногда могут "перекрываться" . В участке связывания субстрат при помощи нековалентных связей взаимодействует (связывается) с ферментом, формируя фермент-субстратный комплекс. В каталитическом участке субстрат претерпевает химическое превращение в продукт, который затем высвобождается из активного центра фермента. Схематично процесс катализа можно представить следующим уравнением:

Е + S ↔ ES ↔ ЕР ↔ Е + Р,

где Е - фермент (энзим), S - субстрат, Р - продукт.

Специфичность - наиболее важное свойство ферментов, определяющее биологическую значимость этих молекул. Различают субстратную и каталитическую специфичности фермента, определяемые строением активного центра. Под субстратной специфичностью понимают способность каждого фермента взаимодействовать лишь с одним или несколькими определёнными субстратами. Различают:

1. абсолютную субстратную специфичность;

2. групповую субстратную специфичность;

3. стереоспецифичность.

Абсолютная субстратная специфичность . Активный центр ферментов, обладающих абсолютной субстратной специфичностью, комплементарен только одному субстрату. Следует отметить, что таких ферментов в живых организмах мало.

Групповая субстратная специфичность Большинство ферментов катализирует однотипные реакции с небольшим количеством (группой) структурно похожих субстратов.

Стереоспецифичность При наличии у субстрата нескольких стерео-изомеров фермент проявляет абсолютную специфичность к одному из них.

Каталитическая специфичность Фермент катализирует превращение присоединённого субстрата по одному из возможных путей его превращения, Это свойство обеспечивается строением каталитического участка активного центра фермента и называется каталитической специфичностью, или специфичностью пути превращения субстрата.

Скорость ферментативной реакции зависит от ряда факторов, таких как количество и активность ферментов, концентрация субстрата, температура среды, рН раствора, присутствие регуляторных молекул (активаторов и ингибиторов).

Зависимость скорости ферментативной реакции от количества ферментов . При проведении ферментативной реакции в условиях избытка субстрата скорость реакции будет зависеть от концентрации фермента. Графическая зависимость такой реакции имеет вид прямой линии Однако количество фермента часто невозможно определить в абсолютных величинах, поэтому на практике пользуются условными величинами, характеризующими активность фермента: одна международная единица активности (ME) соответствует такому количеству фермента, которое катализирует превращение 1 мкмоль субстрата за 1 мин при оптимальных условиях проведения ферментативной реакции. Оптимальные условия индивидуальны для каждого фермента и зависят от температуры среды, рН раствора, при отсутствии активаторов и ингибиторов. .

В 1973 г. была принята новая

По удельной активности судят об очистке фермента: чем меньше посторонних белков, тем выше удельная активность.

Зависимость скорости ферментативной реакции от температуры среды . Повышение температуры до определённых пределов оказывает влияние на скорость ферментативной реакции, подобно влиянию температуры на любую химическую реакцию. С повышением температуры ускоряется движение молекул, что приводит к повышению вероятности взаимодействия реагирующих веществ. Кроме того, температура может повышать энергию реагирующих молекул, что также приводит к ускорению реакции. Однако скорость химической реакции, катализируемая ферментами, имеет свой температурный оптимум, превышение которого сопровождается понижением ферментативной активности, возникающим из-за термической денатурации белковой молекулы.

Зависимость скорости ферментативной реакции от рН среды Активность ферментов зависит от рН раствора, в котором протекает ферментативная реакция. Для каждого фермента существует значение рН, при котором наблюдается его максимальная активность. Отклонение от оптимального значения рН приводит к понижению ферментативной активности. Влияние рН на активность ферментов связано с ионизацией функциональных групп аминокислотных остатков данного белка, обеспечивающих оптимальную конформацию активного центра фермента. При изменении рН от оптимальных значений происходит изменение ионизации функциональных групп молекулы белка. Например, при закислении среды происходит протонирование свободных аминогрупп (NH 3 +), а при защелачивании происходит отщепление протона от карбоксильных групп (СОО -). Это приводит к изменению конформации молекулы фермента и конформации активного центра; следовательно, нарушается присоединение субстрата, кофакторов и коферментов к активному центру. Кроме того, рН среды может влиять на степень ионизации или пространственную организацию субстрата, что также влияет на сродство субстрата к активному центру. При значительном отклонении от оптимального значения рН может происходить денатурация белковой молекулы с полной потерей ферментативной активности. Оптимум значения рН у разных ферментов различный. Ферменты, работающие в кислых условиях среды (например, пепсин в желудке или лизосомальные ферменты), эволюционно приобретают конформацию, обеспечивающую работу фермента при кислых значениях рН. Однако большая часть ферментов организма человека имеет оптимум рН, близкий к нейтральному, совпадающий с физиологическим значением рН.

Зависимость скорости ферментативной реакции от количества субстрата . Если концентрацию ферментов оставить постоянной, изменяя только количество субстрата, то график скорости ферментативной реакции описывают гиперболой. При увеличении количества субстрата начальная скорость возрастает. Когда фермент становится полностью насыщенным субстратом, т.е. происходит максимально возможное при данной концентрации фермента формирование фермент-субстратного комплекса, наблюдают наибольшую скорость образования продукта. Дальнейшее повышение концентрации субстрата не приводит к увеличению образования продукта, т.е. скорость реакции не возрастает. Данное состояние соответствует максимальной скорости реакции Vmax. Таким образом, концентрация фермента - лимитирующий фактор в образовании продукта. Ферментативный процесс можно выразить следующим уравнением:

где k1 - константа скорости образования фермент-субстратного комплекса; k-1 - константа скорости обратной реакции, распада фермент-субстратного комплекса; k2 - константа скорости образования продукта реакции.

.Классификация и номенклатура ферментов. Изоферменты. Единицы измерения активности и количества ферментов.

Каждый фермент имеет 2 названия. Первое - короткое, так называемое рабочее, удобное для повседневного использования. Второе (более полное) - систематическое, применяемое для однозначной идентификации фермента.

Рабочее название. В названии большинства ферментов содержится суффикс "аза", присоединённый к названию субстрата реакции, например уреаза, сахараза, липаза, нуклеаза или к названию химического превращения определённого субстрата, например лактатдегидрогеназа, аденилатциклаза, фосфо-глюкомутаза, пируваткарбоксилаза. Согласно российской классификации ферментов (КФ), названия ферментов пишутся слитно. Однако в употреблении сохранился ряд тривиальных, исторически закреплённых названий ферментов, которые не дают представления ни о субстрате, ни о типе химического превращения, например трипсин, пепсин, ренин, тромбин.

Классы ферментов . Международный союз биохимии и молекулярной биологии в 1961 г. разработал систематическую номенклатуру, согласно которой все ферменты разбиты на 6 основных классов в зависимости от типа катализируемой химической реакции. Каждый класс состоит из многочисленных подклассов и подподклассов с учётом преобразуемой химической группы субстрата, донора и акцептора преобразуемых группировок, наличия дополнительных молекул и т.д. Каждый из 6 классов имеет свой порядковый номер, строго закреплённый за ним.

1. Оксидоредуктазы. Катализируют различные окислительно-восстановительные реакции с участием 2 субстратов (перенос е - или атомов водорода с одного субстрата на другой).

2. Трансферазы. Катализируют перенос функциональных групп от одного соединения к другому. Подразделяют в зависимости от переносимой группы.

3. Гидролазы. Катализируют реакции гидролиза (расщепления ковалентной связи с присоединением молекулы воды по месту разрыва). Подразделяют в зависимости от расщепляемой связи.

4. Лиазы. К лиазам относят ферменты, отщепляющие от субстратов негидролитическим путём определённую группу (при этом могут отщепляться СО 2 , Н 2 О, NH 2 ,SН 2 и др.) или присоединяющие чаще всего молекулу воды по двойной связи.

5. Изомеразы. Катализируют различные внутримолекулярные превращения. Подразделяют в зависимости от типа реакции изомеризации.

6. Лигазы (синтетазы). Катализируют реакции присоединения друг к другу двух молекул с образованием ковалент-ной связи. Этот процесс сопряжён с разрывом фосфоэфирной связи в молекуле АТФ (или других нуклеозидтрифосфатов) или с разрывом макроэргических связей других соединений. В первом случае (при использовании энергии гидролиза АТФ) такие ферменты называют лигазами, или синтетазами

Изоферменты , или изоэнзимы - это различные по аминокислотной последовательности изоформы или изотипы одного и того же фермента, существующие в одноморганизме, но, как правило, в разных его клетках, тканях или органах. Изоферменты, как правило, высоко гомологичны по аминокислотной последовательности и/или подобны по пространственной конфигурации. Особенно консервативны в сохранении строения активные центры молекул изоферментов. Все изоферменты одного и того же фермента выполняют одну и ту же каталитическую функцию, но могут значительно различаться по степени каталитической активности, по особенностям регуляции или другим свойствам.

Одна международная единица активности (ME) соответствует такому количеству фермента, которое катализирует превращение 1 мкмоль субстрата за 1 мин при оптимальных условиях проведения ферментативной реакции. Оптимальные условия индивидуальны для каждого фермента и зависят от температуры среды, рН раствора, при отсутствии активаторов и ингибиторов

. .

Количество единиц активности nME определяют по формуле:

В 1973 г. была принята новая единица активности ферментов: 1 катал (кат), соответствующий такому количеству катализатора, которое превращает 1 моль субстрата за 1 с.

Международная единица ферментативной активности ME связана с каталом следующими равенствами:

1 кат = 1 моль S/c = 60 моль S/мин = 60х106 мкмоль/мин = 6х107 ME,

1 ME = 1 мкмоль/мин = 1/60 мкмоль/с = 1/60 мккат = 16,67 нкат.

В медицинской и фармацевтической практике для оценки активности ферментов часто используют международные единицы активности - ME. Для оценки количества молекул фермента среди других белков данной ткани определяют удельную активность (уд. ак.) фермента, численно равную количеству единиц активности фермента (nМЕ) в образце ткани, делённому на массу (мг) белка в этой ткани.

  • 10. Принципы классификации белков. Классификация по составу и биологическим функциям, примеры представителей отдельных классов.
  • 11. Иммуноглобулины, классы иммуноглобулинов, особенности доменного строения и
  • 13. Классификация и номенклатура ферментов, примеры
  • 1. Оксидоредукпшзы
  • 2.Трансферты
  • 3.Гидролазы
  • 4. Лиазы
  • 5. Изомеразы
  • 6. Лигазы (синтетазы)
  • 15. Кинетика ферментативных реакций. Зависимость скорости ферментативной реакции от температуры, рН среды, концентрации ферментов и субстрата. Уравнение Михаэлиса-Ментен, Кm.
  • 16. Кофакторы ферментов: ионы металлов их роль в ферментативном катализе. Коферменты как производные витаминов. Коферментные функции витаминов в6, рр, в2 на примере трансаминаз и дегидрогеназ.
  • 17. Ингибирование активности ферментов: обратимое (конкурентное и неконкурентное)
  • 1. Конкурентное ингибирование
  • 2. Неконкурентное ингибирование
  • 19. Регуляция каталитической активности ферментов ковалентной модификацией путем фосфорилирования и дефосфорилирования.
  • 20. Ассоциация и диссоциация протомеров на примере протеинкиназы а и ограниченный протеолиз при активации протеолитических ферментов как способы регуляции протеолитической активности ферментов.
  • 21. Изоферменты: происхождение, биологическое значение, примеры. Определение ферментов и изоферментного спектра плазмы крови с целью диагностики заболеваний.
  • 22. Энзимопатии наследственные (фенилкетонурия) и приобретенные (цинга). Применение ферментов для лечения болезней.
  • 23. Общая схема синтеза и распада пиримидиновых нуклеотидов. Регуляция. Оротоцидурия.
  • 24. Общая схема синтеза и распада пуриновых нуклеотидов. Регуляция. Подагра.
  • 27. Гибридизация нуклеиновых кислот. Денатурация и ренативация днк. Гибридизация (днк-днк, днк-рнк). Методы лабораторной диагностики, основанные на гибридизации нуклеиновых кислот.
  • 29. Репликация. Принципы репликации днк. Стадии репликации. Инициация. Белки и ферменты, принимающие участие в формировании репликативной вилки.
  • 30. Элонгация и терминация репликации. Ферменты. Асимметричный синтез днк. Фрагменты Оказаки. Роль днк-лигазы в формировании непрерывной и отстающей цепи.
  • 31. Повреждения и репарация днк. Виды повреждений. Способы репарации. Дефекты репарационных систем и наследственные болезни.
  • 32. Транскрипция. Характеристика компонентов системы синтеза рнк. Структура днк-зависимой рнк-полимеразы: роль субъединиц. Инициация процесса. Элонгация, терминация, транскрипция.
  • 33. Первичный транскрипт и его процессинг. Рибозимы как пример каталитической активности нуклеиновых кислот. Биороль.
  • 35. Сборка полипептидной цепи на рибосоме. Образование инициаторного комплекса. Элонгация: образование пептидной связи (реакция транспептидации). Транслокация. Транслоказа. Терминация.
  • 1. Инициация
  • 2. Элонгация
  • 3. Терминация
  • 36. Особенности синтеза и процессинга секретируемых белков (на примере коллагена и инсулина).
  • 37. Биохимия питания. Основные компоненты пищи человека, их биороль, суточная потребность в них. Незаменимые компоненты пищи.
  • 38. Белковое питание. Биологическая ценность белков. Азотистый баланс. Полноценность белкового питания, нормы белка в питании, белковая недостаточность.
  • 39. Переваривание белков: протеазы жкт, их активация и специфичность, оптимум рН и результат действия. Образование и роль соляной кислоты в желудке. Защита клеток от действия протеаз.
  • 40. Всасывание продуктов переваривания. Транспорт ак в клетки кишечника. Особенности транспорта ак в гепатоцитах. Y-глутамильный цикл. Нарушение переваривания и всасывания ак.
  • 42. Минеральные вещества пищи, макро- и микроэлементы, биологическая роль. Региональные патологии, связанные с недостатком микроэлементов.
  • 43. Биологические мембраны, строение, функции и общие свойства: жидкостность, поперечная ассиметрия, избирательная проницаемость.
  • 1. Структура и свойства липидов мембран
  • 2. Трансмембранная асимметрия липидов
  • 3. Жидкостностъ мембран
  • 4. Функции мембранных липидов
  • 45. Механизм переноса веществ через мембраны: простая диффузия, пассивный симпорт и антипорт, активный транспорт, регулируемые каналы. Мембранные рецепторы.
  • 1. Первично-активный транспорт
  • 2. Вторично-активный транспорт
  • 46. Эндергонические и экзергонические реакции живой клетки. Макроэргические соединения, определение, пример.
  • 4. Сопряжение экзергонических и эндергонических процессов в организме
  • 2. Цепь переноса электронов от nadh и fadh2 на кислород
  • 50. Образование активных форм кислорода(синглетный кислород, пероксид водорода, гидроксильный радикал). Место образоваия, схемы реакций. Физиологическая роль афк.
  • 51. Механизм повреждающего действия активных форм кислорода на клетки (пол, окисление белков и нуклеиновых кислот). Примеры реакций.
  • 1. Строение пируватдегидрогеназного комплекса
  • 2. Окислительное декарбоксилирование пирувата
  • 3. Связь окислительного декарбоксилирования пирувата с цпэ
  • 53. Цикл лимонной кислоты: последовательность реакций и характеристика ферментов. Роль цикла в метаболизме.
  • 57. Аэробный гликолиз. Последовательность реакций до образования пирувата (аэробный гликолиз). Использование глюкозы для синтеза жиров. Энергетический эффект аэробного распада глюкозы.
  • 1. Этапы аэробного гликолиза
  • 2. Реакции аэробного гликолиза
  • 1. Реакции анаэробного гликолиза
  • 60. Гликоген, биологическое значение. Биосинтез и мобилизация гликогена. Регуляция синтеза и распада гликогена. Обмен гликогена в анте- и неонатальном периоде.
  • 61. Наследственные нарушения обмена моносахаридов и дисахаридов: галактоземия, непереносимость фруктозы и дисахаридов, эссенциальная фруктоземия. Гликогенозы и агликогенозы.
  • 62. Липиды. Общая характеристика. Биологическая роль. Классификация липидов. Высшие жирные кислоты, особенности строения. Полиеновые жирные кислоты. Триацилглицеролы.
  • 65. Депонирование и мобилизация жиров в жировой ткани, физиологическая роль этих процессов. Роль инсулина, адреналина и глюкагона в регуляции метобализма жира.
  • 67. Биосинтез жирных кислот. Основные стадии процесса. Регуляция обмена жирных кислот.
  • 69. Холестерин. Пути поступления, использования и выведения из организма. Уровень холестерина в сыворотке крови. Биосинтез холестерина, его этапы. Регуляция синтеза.
  • 74. Непрямое дезаминирование аминокислот. Схема процесса, субстраты, ферменты, кофакторы.
  • 1. Синтез и биологическая роль серотонина
  • 1. Окислительное дезаминирование
  • 2. Непрямое дезаминирование (трансдезаминирование)
  • 3. Неокислительное дезамитровате
  • 1. Метаболизм феиилаланина
  • 2. Особенности обмена тирозина в разных тканях
  • 3. Заболевания, связанные с нарушением обмена фенилаланина и тирозина
  • 1. Классификация гормонов по химическому строению
  • 2. Классификация гормонов по биологическим функциям
  • 3. Передача сигналов через рецепторы, сопряжённые с ионными каналами
  • 1. Гормон роста, пролактин
  • 2. Тиреотропин, лютеинизирующий гормони фолликулостимулирующий гормон
  • 3. Группа гормонов, образующихсяиз проопиомеланокортина
  • 1. Синтез и секреция антидиуретического гормона
  • 2. Механизм действия
  • 3. Несахарный диабет
  • 1. Механизм действия альдостерона
  • 2. Роль системы ренин-ангиотензин- альдостерон в регуляции водно-солевого обмена
  • 3. Восстановление объёма крови при обезвоживании организма
  • 4. Гиперальдостеронтм
  • 1. Синтез и секреция птг
  • 2. Роль паратгормона в регуляции обмена кальция и фосфатов
  • 3. Гиперпаратиреоз
  • 4. Гипопаратиреоз
  • 1. Строение и синтез кальцитриола
  • 2. Механизм действия кальцитриола
  • 3. Рахит
  • 2. Биологические функции инсулина
  • 3. Механизм действия инсулина
  • 1. Изменения метаболизма в печени в абсорбтивном периоде
  • 2. Изменения метаболизма в адипоцитах
  • 3. Изменение метаболизма в мышцах в абсорбтивном периоде
  • 1. Изменения метаболизма в печени
  • 2. Изменения метаболизма в жировой ткани
  • 1. Инсулинзависимый сахарный диабет
  • 2. Инсулинонезависимый сахарный диабет
  • 1. Симптомы сахарного диабета
  • 2. Острые осложнения сахарного диабета. Механизмы развития диабетической комы
  • 3. Поздние осложнения сахарного диабета
  • 1. Основные ферменты микросомальных электронтранспортных цепей
  • 2. Функционирование цитохрома р450
  • 3. Свойства системы микросомального окисления
  • До настоящего времен нет единой и стройной классификации, учитывающей различные параметры белков. В основе имеющихся классификаций обычно лежит один признак. Так, белки можно классифицировать:

    По форме молекул (глобулярные или фибриллярные);

    По молекулярной массе (низкомолекулярные, высокомолекулярные и др.);

    По химическому строению (наличие или отсутствие небелковой части);

    По выполняемым функциям (транспортные, защитные, структурные белки и др.);

    По локализации в клетке (ядерные, цито-плазматические, лизосомальные и др.);

    По локализации в организме (белки крови, печени, сердца и др.);

    По возможности адаптивно регулировать количество данных белков: белки, синтезирующиеся с постоянной скоростью (конститутивные), и белки, синтез которых может усиливаться при воздействии факторов среды (индуцибельные);

    По продолжительности жизни в клетке (от очень быстро обновляющихся белков, с Т 1/2 менее 1 ч, до очень медленно обновляющихся белков, Т 1/2 которых исчисляют неделями и месяцами);

    По схожим участкам первичной структуры и родственным функциям (семейства белков).

    Классификация белков по химическому строению

    1. Простые белки

    Некоторые белки содержат в своём составе только полипептидные цепи, состоящие из аминокислотных остатков. Их называют "простые белки". Примером простых белков - гистоны; в их составе содержится много аминокислотных остатков лизина и аргинина, радикалы которых имеют положительный заряд.

    2. Сложные белки

    Очень многие белки, кроме полипептидных цепей, содержат в своём составе небелковую часть, присоединённую к белку слабыми или ковалентными связями. Небелковая часть может быть представлена ионами металлов, какими-либо органическими молекулами с низкой или высокой молекулярной массой. Такие белки называют "сложные белки". Прочно связанная с белком небелковая часть носит название простетической группы.

    Простетическая группа может быть представлена веществами разной природы. Например, белки, соединённые с гемом, носят название гемопротеины. В состав гемопротеинов, кроме уже рассмотренных выше белков гемоглобинов и миоглобина, входят ферменты - цитохромы, каталаза и пероксидаза. Гем, присоединённый к разным белковым структурам, выполняет в них характерные для каждого из белков функции (например, в составе гемоглобина переносит О 2 , а в составе цитохромов - электроны).

    Белки, соединённые с остатком фосфорной кислоты, называют фосфопротеинами. Фосфорные остатки присоединяются сложноэфирной связью к гидроксильным группам серина, треонина или тирозина при участии ферментов, называемых протеинкиназами.

    В состав белков часто входят углеводные остатки, придающие белкам дополнительную специфичность и часто уменьшающие скорость их ферментативного протеолиза. Такие белки носят название гликопротеинов. Многие белки крови, а также рецепторные белки клеточной поверхности относят к гликопротеинам.

    Белки, функционирующие в комплексе с липидами, называют липопротеинами, а в комплексе с металлами - металлопротеинами.

    Сложный белок, состоящий из белковой части (апопротеин) и небелковой части (простетическая группа), называют "холопротеин".

    Классификация белков по функциям

    1. Ферменты - специализированные белки, ускоряющие течение химических реакций. Благодаря ферментам в клетке скорости химических реакций возрастают в миллионы раз. Так как ферменты, как и любые белки, имеют активный центр, они специфически связывают определённый лиганд (или группу похожих лигандов) и катализируют определённый тип химического превращения данной молекулы. Например, протеолитический фермент трипсин разрушает в белках пептидные связи, образованные карбоксильной группой основных аминокислот - аргинина или лизина. Фермент рибонуклеаза расщепляет фосфоэфирную связь между нуклеотидами в полинуклеотидной цепи.

    2. Регуляторные белки - большую группу белковых гормонов, участвующих в поддержании постоянства внутренней среды организма, которые воздействуют на специфические клетки-мишени. Например, гормон инсулин выделяется в кровь при повышении концентрации глюкозы в крови после еды и, стимулируя использование глюкозы клетками, снижает концентрацию глюкозы до нормы, т.е. восстанавливает гомеостаз.

    Кроме того, к регуляторным относят белки, присоединение которых к другим белкам или иным структурам клетки регулирует их функцию. Например, белок кальмодулин в комплексе с четырьмя ионами Са 2+ может присоединяться к некоторым ферментам, меняя их активность.

    Регуляторные ДНК-связывающие белки, присоединяясь в определённые моменты к специфичным участкам ДНК, могут регулировать скорость считывания генетической информации.

    3. Рецепторные белки Сигнальные молекулы (гормоны, нейромедиаторы) действуют на внутриклеточные процессы через взаимодействие со специфическими белками-рецепторами. Так, гормоны, циркулирующие в крови, находят клетки-мишени и воздействуют на них, специфично связываясь с белками-рецепторами, обычно встроенными в клеточную мембрану. Для гидрофобных регуляторных молекул, проходящих через клеточную мембрану, рецепторы локализуются в цитоплазме клеток.

    4. Транспортные белки Многие белки крови участвуют в переносе специфических лигандов из одного органа к другому. Часто в комплексе с белками переносятся молекулы, плохо растворимые в воде. Так, белок плазмы крови альбумин переносит жирные кислоты и билирубин (продукт распада тема), а гемоглобин эритроцитов участвует в переносе О 2 от лёгких к тканям. Стероидные гормоны переносятся в крови специфическими транспортными белками.

    Транспортные белки участвуют также в переносе гидрофильных веществ через гидрофобные мембраны. Так как транспортные белки обладают свойством специфичности взаимодействия с лигандами, их набор в клеточной мембране определяет, какие гидрофильные молекулы могут пройти в данную клетку. С помощью белков-переносчиков в клетку проникают глюкоза, аминокислоты, ионы и другие молекулы.

    5. Структурные белки Некоторые белки, расположенные определённым образом в тканях, придают им форму, создают опору, определяют механические свойства данной ткани. Например, как уже говорилось выше, главным компонентом хрящей и сухожилий является фибриллярный белок коллаген, имеющий высокую прочность. Другой структурный белок (эластин) благодаря своему уникальному строению обеспечивает определённым тканям свойство растягиваться во всех направлениях (сосуды, лёгкие).

    6. Защитные белки Некоторые белки, в частности иммуноглобулины, обладают способностью узнавать и связывать чужеродные молекулы, вирусные частицы и бактерии, в результате чего происходит их нейтрализация. Кроме того, комплекс чужеродной частицы с иммуноглобулином легко узнаётся и уничтожается клетками иммунной системы.

    Защитными свойствами обладают белки свёртывающей системы крови, например фибриноген, тромбин. Они участвуют в формировании тромба, который закупоривает повреждённый сосуд и препятствует потере крови.

    7. Сократительные белки Некоторые белки при выполнении своих функций наделяют клетку способностью либо сокращаться, либо передвигаться. К таким белкам относят актин и миозин - фибриллярные белки, участвующие в сокращении скелетных мышц. Другой пример таких белков - тубулин, из которого построены клеточные органеллы - микротрубочки. Микротрубочки в период деления клетки регулируют расхождение хроматид. Микротрубочки - важные элементы ресничек и жгутиков, с помощью которых клетки передвигаются.

  • Основана на различиях по составу или по форме.

    По составу белки делят на две группы:

      Простые белки (протеины) состоят только из аминокислот: протамины и гистоны обладают основными свойствами и входят в состав нуклеопротеидов. Гистоны участвуют в регуляции активности генома. Проламины и глютелины – белки растительного происхождения, составляют основную массу клейковины. Альбумины и глобулины – белки животного происхождения. Богаты ими сыворотка крови, молоко, яичный белок, мышцы.

      Сложные белки (протеиды = протеины) содержат небелковую часть – простетическую группу. Если простетической группой является пигмент (гемоглобин, цитохромы), то это хромопротеиды. Белки, связанные с нуклеиновыми кислотами – нуклеопротеиды. Липопротеины – связаны с каким – либо липидом. Фосфопротеиды – состоят из белка и лабильного фосфата. Их много в молоке, в ЦНС, икре рыб. Гликопротеиды связаны с углеводами и их производными. Металлопротеины – белки, содержащие негеминовое железо, а также образующие координационные решетки с атомами металлов в составе белков – ферментов.

    По форме различают

    Глобулярные белки – это плотно свернутые полипептидные цепи сферической формы, для них важна третичная структура. Хорошо растворимы в воде, в разбавленных растворах кислот, оснований, солей. Глобулярные белки выполняют динамические функции. Например, инсулин, белки крови, ферменты.

    Фибриллярные белки – молекулы вторичной структуры. Они построены из параллельных, сравнительно сильно растянутых пептидных цепей, вытянутой формы, собранные в пучки, образуют волокна (кератин ногтей, волос, паутины, шелка, коллаген сухожилий). Выполняют преимущественно структурную функцию.

    Функции белков:

      Строительная – белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран, шерсти, волос, сухожилий, стенок сосудов и т.д.

      Транспортная – некоторые белки способны присоединять к себе различные вещества и переносить (доставлять) их из одного места клетки в другое, и к различным тканям и органам тела. Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ. В состав клеточных мембран входят особые белки, обеспечивающие активный и строго избирательный перенос некоторых веществ и ионов из клетки и в клетку – осуществляется обмен с внешней средой.

      Регуляторная функция – принимают участие в регуляции обмена веществ. Гормоны влияют на активность ферментов, замедляя или ускоряя обменные процессы, изменяют проницаемость клеточных мембран, поддерживают постоянство концентрации веществ в крови и клетках, участвуют в процессе роста. Гормон инсулин регулирует уровень сахара в крови путем повышения проницаемости клеточных мембран для глюкозы, способствует синтезу гликогена, увеличивает образование жиров из углеводов.

      Защитная функция = Иммунологическая. В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки - антитела, способные связывать и обезвреживать их. Синтез иммуноглобулинов происходит в лимфоцитах. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.

      Двигательная функция. Сократительные белки обеспечивают движение клеток и внутриклеточных структур: образовании псевдоподий, мерцании ресничек, биении жгутиков, сокращении мышц, движении листьев у растений.

      Сигнальная функция. В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды. Так происходит прием сигналов из внешней среды и передача команд в клетку.

      Запасающая функция. В организме могут откладываться про запас некоторые вещества. Например, при распаде гемоглобина железо не выводится из организма, а сохраняется в селезенке, образуя комплекс с белком ферритином. К запасным относятся белки яйца, молока.

      Энергетическая функция. При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Распад идет сначала до аминокислот, а потом – до воды, аммиака и углекислого газа. Однако в качестве источника энергии белки используются тогда, когда израсходованы жиры и углеводы.

      Каталитическая функция. Ускорение биохимических реакций под действием белков - ферментов.

      Трофическая. Питают зародыш на ранних стадиях развития и запасают биологически ценные вещества и ионы.

    Липиды

    Большая группа органических соединений, являющихся производными трехатомного спирта глицерина и высших жирных кислот. Поскольку в их молекулах преобладают неполярные и гидрофобные структуры, то они нерастворимы в воде, а растворимы в органических растворителях.

    Структура простых белков представлена только полипептидной цепью (альбумин, инсулин). Однако необходимо понимать, что многие простые белки (например, альбумин) не существуют в "чистом" виде, они всегда связаны с какими-либо небелковыми веществами. Их относят к простым белкам только по той причине, что связи с небелковой группой слабые и при выделении in vitro они оказываются свободным от других молекул - простым белком.

    Альбумины

    В природе альбумины входят в состав не только плазмы крови (сывороточные альбумины), но и яичного белка (овальбумин), молока (лактальбумин), являются запасными белками семян высших растений.

    Глобулины

    Группа разнообразных белков плазмы крови с молекулярной массой до 100 кДа, слабокислые или нейтральные . Они слабо гидратированы, по сравнению с альбуминами меньше устойчивы в растворе и легче осаждаются, что используется в клинической диагностике в "осадочных" пробах (тимоловая , Вельтмана). Несмотря на то, что их относят к простым, часто содержат углеводные компоненты.

    При электрофорезе глобулины сыворотки крови разделяются, как минимум, на 4 фракции – α 1 -глобулины , α 2 -глобулины , β-глобулины и γ-глобулины .

    Картина электрофореграммы (вверху) белков сыворотки крови
    и полученной на ее основе протеинограммы (внизу)

    Так как глобулины включают в себя разнообразные белки, то их функции разнообразны:

    Часть α-глобулинов обладает антипротеазной активностью, что защищает белки крови и межклеточного матрикса от преждевременного разрушения, например, α 1 -антитрипсин , α 1 -антихимотрипсин , α 2 -макроглобулин .

    Некоторые глобулины способны к связыванию определенных веществ: трансферрин (переносит ионы железа), церулоплазмин (содержит ионы меди), гаптоглобин (переносчик гемоглобина), гемопексин (транспорт гема).

    γ-Глобулины являются антителами и обеспечивают иммунную защиту организма.

    Гистоны

    Гистоны – внутриядерные белки массой около 24 кДа. Обладают выраженными основными свойствами, поэтому при физиологических значениях рН заряжены положительно и связываются с дезоксирибо-нуклеиновой кислотой (ДНК), образуя дезоксирибо-нуклеопротеины . Существуют 5 типов гистонов – очень богатый лизином (29%) гистон Н1, другие гистоны Н2а, H2b, НЗ, Н4 богаты лизином и аргинином (в сумме до 25%).

    Радикалы аминокислот в составе гистонов могут быть метилированы, ацетилированы или фосфорилированы. Это изменяет суммарный заряд и другие свойства белков.

    Можно выделить две функции гистонов:

    1. Регуляция активности генома, а именно – они препятствуют транскрипции.

    2. Структурная – стабилизируют пространственную структуру ДНК.

    Гистоны в комплексе с ДНК образуют нуклеосомы – октаэдрические структуры, составленные из гистонов Н2а, H2b, НЗ, Н4. Гистон H1 связан с молекулой ДНК, не позволяя ей "соскользнуть" с гистонового октамера. ДНК обвивает нуклеосому 2,5 раза после чего обвивает следующую нуклеосому. Благодаря такой укладке достигается уменьшение размеров ДНК в 7 раз.

    Благодаря гистонам и формированию более сложных структур размеры ДНК, в конечном итоге, уменьшаются в тысячи раз: на самом деле длина ДНК достигает 6-9 см (10 –1) , а размеры хромосом – всего несколько микрометров (10 –6).

    Протамины

    Это белки массой от 4 кДа до 12 кДа, имеются в ядрах сперматозоидов многих организмов, в сперме рыб они составляют основную массу белка. Протамины являются заменителями гистонов и служат для организации хроматина в спермиях. По сравнению с гистонами протамины отличаются резко увеличенным содержанием аргинина (до 80%). Также, в отличие от гистонов, протамины обладают только структурной функцией, регулирующей функции у них нет, хроматин в сперматозоидах неактивен.

    Коллаген

    Коллаген – фибриллярный белок с уникальной структурой, составляет основу межклеточного вещества соединительной ткани сухожилий, кости, хряща, кожи, но имеется, конечно, и в других тканях.

    Полипептидная цепь коллагена включает 1000 аминокислот и носит название α-цепь. Насчитывается около 30 вариантов α-цепи коллагена, но все они обладают одним общим признаком – в большей или меньшей степени включают повторяющийся триплет [Гли-Х-Y ], где X и Y – любые, кроме глицина, аминокислоты. В положении X чаще находится пролин или, гораздо реже, 3-оксипролин , в положении Y встречается пролин и 4-оксипролин . Также в положении Y часто находится аланин , лизин и 5-оксилизин . На другие аминокислоты приходится около трети от всего количества аминокислот.

    Жесткая циклическая структура пролина и оксипролина не позволяет образовать правозакрученную α-спираль , но образует т.н. "пролиновый излом". Благодаря такому излому формируется левозакрученная спираль, где на один виток приходится 3 аминокислотных остатка.

    При синтезе коллагена первостепенное значение имеет гидроксилирование лизина и пролина , включенных в состав первичной цепи, осуществляемое при участии аскорбиновой кислоты . Также коллаген обычно содержит моносахаридные (галактоза) и дисахаридные (глюкоза-галактоза) молекулы, связанные с ОН-группами некоторых остатков оксилизина.

    Этапы синтеза молекулы коллагена

    Синтезированная молекула коллагена построена из 3 полипептидных цепей, сплетенных между собой в плотный жгут – тропоколлаген (длина 300 нм, диаметр 1,6 нм). Полипептидные цепи прочно связаны между собой через ε-аминогруппы остатков лизина. Тропоколлаген формирует крупные коллагеновые фибриллы диаметром 10-300 нм. Поперечная исчерченность фибриллы обусловлена смещением молекул тропоколлагена друг относительно друга на 1/4 их длины.

    Фибриллы коллагена очень прочны, они прочнее стальной проволоки равного сечения. В коже фибриллы образуют нерегулярно сплетенную и очень густую сеть. Например, выделанная кожа представляет собой почти чистый коллаген.

    Гидроксилирование пролина осуществляет железо -содержащий фермент пролилгидроксилаза для которого необходим витамин С (аскорбиновая кислота). Аскорбиновая кислота предохраняет от инактивации пролилгидроксилазу, поддерживая восстановленное состояние атома железа в ферменте. Коллаген, синтезированный в отсутствии аскорбиновой кислоты, оказывается недостаточно гидроксилированным и не может образовывать нормальные по структуре волокна, что приводит к поражению кожи и ломкости сосудов, и проявляется как цинга .

    Гидроксилирование лизина осуществляет фермент лизилгидроксилаза. Она чувствительна к влиянию гомогентизиновой кислоты (метаболит тирозина), при накоплении которой (заболевания алкаптонурия ) нарушается синтез коллагена, и развиваются артрозы.

    Время полужизни коллагена исчисляется неделями и месяцами. Ключевую роль в его обмене играет коллагеназа , расщепляющая тропоколлаген на 1/4 расстояния с С-конца между глицином и лейцином.

    По мере старения организма в тропоколлагене образуется все большее число поперечных связей, что делает фибриллы коллагена в соединительной ткани более жесткими и хрупкими. Это ведет к повышенной ломкости кости и снижению прозрачности роговицы глаза в старческом возрасте.

    В результате распада коллагена образуется гидроксипролин . При поражении соединительной ткани (болезнь Пейджета, гиперпаратиреоидизм) экскреция гидроксипролина возрастает и имеет диагностическое значение .

    Эластин

    По строению в общих чертах эластин схож с коллагеном. Находится в связках, эластичном слое сосудов. Структурной единицей является тропоэластин с молекулярной массой 72 кДа и длиной 800 аминокислотных остатков. В нем гораздо больше лизина, валина, аланина и меньше гидроксипролина. Отсутствие пролина обусловливает наличие спиральных эластичных участков.

    Характерной особенностью эластина является наличие своеобразной структуры – десмозина , который своими 4-мя группами объединяет белковые цепи в системы, способные растягиваться во всех направлениях.

    α-Аминогруппы и α-карбоксильные группы десмозина включаются в пептидные связи одной или нескольких белковых цепей.

    Класс белков Примеры Локализация, функция
    Структурные белки Коллаген Компонент соединительной ткани, костей, сухожилий, хряща.
    Склеротин Наружный скелет насекомых
    α - Кератин Кожа, перья, ногти, волосы, рога.
    Эластин Эластичная соединительная ткань (связки)
    Мукопротеины Синовиальная жидкость, слизистые секреты
    Белки оболочки вирусов «Обёртка» нуклеиновой кислоты вируса.
    Ферменты Трипсин Катализирует гидролиз белков
    Рибулозобисфосфаткарбоксилаза Катализирует карбоксилирование (присоединение СО 2) рибулозобисфосфата при фотосинтезе
    Глутаминсинтетаза Катализирует образование аминокислоты глутамина из глутаминовой кислоты и аммиака
    Гормоны Инсулин Глюкагон АКТГ Регулируют обмен глюкозы Стимулируют рост и активность коры надпочечников
    Транспортные белки Гемоглобин Переносит О 2 в крови позвоночных
    Гемоцианин Переносит О 2 в крови некоторых беспозвоночных
    Миоглобин Переносит О 2 в мышцах
    Сывороточный альбумин Служит для транспорта жирных кислот, липидов и т.п.
    Защитные белки Антитела Образует комплексы с инородными белками
    Фибриноген Предшественник фибрина при свёртываемости крови
    Тромбин Участвует в процессе свёртывания крови
    Сократительные белки Миозин Подвижные нити миофибрилл саркрмера
    Актин Неподвижные нити миофибрилл саркрмера
    Запасные белки Яичный альбумин Белок яйца
    Казеин Белок молока
    Токсины Змеиный яд Ферменты
    Дифтерийный токсин Токсин, вырабатываемый дифтерийной палочкой

    Классификация белков по структуре

    - Фибриллярные – наиболее важна вторичная структура (третичная почти или совсем не выражена), нерастворимы в воде, отличаются большой механической прочностью. Длинные параллельные полипептидные цепи, скрепленные друг с другом поперечными сшивками, образуют длинные волокна или слоистые структуры. Выполняют в клетках и в организме структурные функции, например, входят в состав соединительной ткани. К этой группе относится коллаген (сухожилия, межклеточное вещество костной ткани), миозин (саркомеры мышц), фиброин (шёлк, паутина), кератин (волосы, рога, ногти, перья).

    - Глобулярные – наиболее важна третичная структура. Полипептидные цепи свёрнуты в компактные глобулы. Растворимы. Легко образуют коллоидные суспензии. Выполняют функцию ферментов, антител (глобулины сыворотки крови определяют иммунологическую активность) и в некоторых случаях гормонов (например, инсулин). Играют важную роль в протоплазме, удерживая в ней воду и некоторые другие вещества, способствуют поддержанию молекулярной организации.

    - Промежуточные – фибриллярной природы, но растворимые. Примером может служить фибриноген, превращающийся в нерастворимый фибрин при свёртывании крови.

    Функции белков:

    1. Ферментативная

    2.Белки-гормоны

    3.Регуляторная

    4. Защитная

    5. Транспортная

    6. Структурные белки

    7. Сократительные белки

    8. Рецепторные белки

    9. Белки-токсины

    10. Белки - ингибиторы ферментов

    11. Белки внутренних оболочек.

    Нуклеиновые кислоты

    -нерегулярные гетерополимеры, мономерами которых являются нуклеотиды.

    Впервые нуклеиновые кислоты были выделены в 1869 году шведцарским биохимиком Фридрихом Мишером из клеток гноя. Известно 2 типа нуклеиновых кислот: дезоксирибонуклеиновая кислота и рибонуклеиновая кислота или ДНК и РНК. Нуклеотиды, являющиеся мономерами нуклеиновых кислот имеют не простое строение.

    В состав нуклеиновых кислот входят азотистые основания, пятиуглеродный сахар и остаток фосфорной кислоты.

    В составе нуклеиновых кислот может быть 2 типа пентоз: в составе ДНК - дезоксирибоза, в составе РНК - рибоза. Нуклеиновые кислоты получили название по названию входящей в них пентозы.

    Азотистые основания в составе нуклеиновых кислот называются аденин, гуанин, тимин, цитозин и урацил, они представлены на рисунке ниже.

    Нуклеотиды – это мономеры нуклеиновых кислот. Кроме названных нуклеотидов в нуклеиновых кислотах в небольших количествах встречаются ещё более 20-ти "минорных" нуклеотидов - их азотистые основания являются производными 5-ти основных.

    Образование нуклеотидов происходит в 2 этапа. 1) Пентоза, соединяясь с азотистым основанием в ходе реакции конденсации образует нуклеозид.

    2) К нуклеозиду входе ещё одной реакции конденсации присоединяется остаток фосфорной кислоты с образованием фосфорно-эфирной связи.

    3) Друг с другом нуклеотиды соединяются брагодаря реакции конденсации, при этом образуется фосфорнодиэфирная связь между 3" гидрооксилом одного гидрооксидного остатка и 5" гидрооксилом другого. Образовавшаяся при этом связь называется фосфорнодиэфирная. Фосфорнодиэфирные связи в полинуклеотидной цепи ковалентные, прочные, стабильные.

    Сахара вместе с азотистым основанием называются нуклеозидами (аденозин, гуанозин, тимидин, цитидин). Если к ним присоединены 1-, 2-, или 3-фосфорных остатка, то вся эта структура называется соответственно, нуклеотизид монофосфатом, дифосфатом или трифосфатом или нуклеотидом (аденин, гуанин, тимин, цитозин).

    Вот так модель АТФ выглядит в пространстве.

    Полинуклеотидная цепь имеет 2 конца: 3" конец, где 3" - ни с чем не связан (гидрооксил пентозы); 5" - гидрооксил пентозы связан только с фосфатом. Принято 5" концевой нуклеотид считать началом цепи, а 3" - её концом. В организме распад полипептидных цепей проипсходит под действием ферментов нуклеаз .

    Азотистое основание, входящее в состав ДНК делится на две группы – пиримидиновую и пуриновую. В состав ДНК входит аденин, тимин, цитозин и гуанин, в РНК вместо тимина урацил. Как известно, ДНК – это большой архив, в котором хранится информация, а РНК – это молекула, которая переносит информацию из ядра в цитоплазму для синтеза белков. С различием в функциях связаны различия в строении. РНК более химически активно из-за того, что ее сахар - рибоза – имеет в своем составе гидроксильную группу, а в дезоксирибозе кислорода нет. Из-за отсутствия кислорода ДНК более инертно, что важно для ее функции хранения информации, чтобы она не вступала ни в какие реакции.

    В начале 50-х годов американский биохимик Эдвин Чаргафф изучал нуклеотидный состав ДНК, результаты своих экспериментов он обобщил в виде правил (правила Чаргаффа)

    Установлено, что диаметрн молекулы ДНК равен 2 нанометра, на 1 полный виток спирали приходится в каждой цепи 10 нуклеотидов, межнуклеотидное расстояние вдоль оси спирали составляет 0,34 нанометра.

    Полная расшифровка структуры ДНК была произведена в 1953 году американским биохимиком Джеймсом Уотсоном и английским физиком Френсисом Криком. Работая вместе в Кембридском университете они использовали все известные на тот момент данные:

    Модель ДНК по Уотсону и Крику:

    Долгое время считалось, что существует только такая форма ДНК, которая была описана Уотсоном и Криком, но в настоящее время известно, что ДНК может образовывать более 10 различных форм, способных к взаимопереходу и которые отличаются друг от друга по целому ряду параметров. Например: по числу пар нуклеотидных остатков в витке (шаг спирали). Например:

    А - форма - шаг спирали 10 пар оснований;

    В - форма - шаг спирали 10 пар оснований.

    С - форма - 9,3 пар оснований

    Z - форма - 12 пар оснований.

    Все формы, кроме Z - правозакрученные; Z - форма левозакрученная. Количественно в клетках значительно преобладает В - форма.

    Молекулы ДНК - эукариот и многих вирусов существуют в линейных формах, ДНК - бактериальных клеток, хлоропластов, митохондрий, некоторых вирусов имеет кольцевую форму. ДНК некоторых вирусов - одноцепочечная.

    ДНК эукариот связана с белками и образует основное вещество ядра - хромитин.

    Свойства ДНК

    Вещество белого цвета, волокнистого строения, плохо растворимое в воде, растворяется в крепких солевых растворах. Растворы ДНК высоко вязкие, обладают двойным лучепреломлением. Молекулы оптически и электрически активны. Прочно связывают многовалентные ионы металлов, вступают в реакцию алкинирования и дезаминирования азотистых оснований.

    gastroguru © 2017